

Application Note Please read the Important Notice and Warnings at the end of this document 002-34334 Rev. *A

www.infineon.com page 1 of 38 2022-06-17

AN234334

Getting started with XMC7000 MCU on

ModusToolbox™ software

About this document

Scope and purpose

This application note helps you explore the XMC7000 MCU architecture and development tools and shows you
how to create your first project using the Eclipse IDE for ModusToolbox™ software. This application note also

guides you to more resources available online to accelerate your learning about XMC7000 MCU.

Intended audience

This document is intended for the users who are new to XMC7000 MCU and ModusToolbox™ software.

Associated part family

All XMC7000 MCU devices

Software version

ModusToolbox™ software 3.0 or above

More code examples? We heard you.

To access an ever-growing list of XMC7000 code examples using ModusToolbox™, please visit the GitHub site.

Table of contents

About this document ... 1

Table of contents .. 1

1 Introduction .. 3

2 Development ecosystem ... 6

2.1 XMC7000 resources ... 6
2.2 Firmware/application development .. 6
2.2.1 Choosing an IDE ... 6
2.2.2 ModusToolbox™ software .. 7

2.2.3 XMC7000 software resources ... 8

2.2.3.1 Configurators .. 8
2.2.3.2 Library management for XMC7000 MCU .. 9

2.2.3.3 Software development for XMC7000 MCU ... 9

2.3 Support for other IDEs ... 10
2.4 FreeRTOS support with ModusToolbox™ ... 11
2.5 Programming/debugging ... 11
2.6 XMC7000 MCU development kits .. 12

3 Device features ... 13

4 My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software 16

4.1 Prerequisites .. 16
4.1.1 Hardware .. 16
4.1.2 Software ... 16

https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/
http://www.cypress.com/modustoolbox
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software

Application Note 2 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Table of contents

4.2 Using these instructions.. 16
4.3 About the design ... 16

4.4 Part 1: Create a new application ... 17
4.5 Part 2: View and modify the design .. 19

4.6 Part 3: Write firmware ... 22
4.7 Part 4: Build the application ... 29

4.8 Part 5: Program the device .. 30
4.9 Part 6: Test your design ... 31

5 Summary ... 34

References .. 35

Glossary ... 36

Revision history... 37

Application Note 3 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Introduction

1 Introduction

The XMC7000 device is a microcontroller targeted at industrial applications. The XMC7000 integrates the

following features on a single chip:

• Up to two 350-MHz 32-bit Arm® Cortex®-M7 CPUs each with

− Single-cycle multiply

− Single-/double-precision floating point unit (FPU)

− 16-KB data cache, 16-KB instruction cache

− Memory protection unit (MPU)

− 16-KB instruction and 16-KB data tightly-coupled memory (TCM)

• 100-MHz 32-bit Arm® Cortex® M0+ CPU with single-cycle multiply and MPU

• Programmable analog and digital peripherals

• Up to 8384 KB of code flash with an additional, up to 256 KB of work flash and an internal SRAM of up to
1024 KB

• XMC7000 MCU is suitable for a variety of power-sensitive applications such as:

− Wireless charging

− Lighting

− Power supply servers

− Robots and drones

− MHA

− Industrial drives

− PLC

− I/O modules

− Electric two-wheelers

The ModusToolbox™ software environment supports XMC7000 MCU application development with a set of
tools for configuring the device, setting up peripherals, and complementing your projects with world-class

middleware. See the Infineon GitHub repos for BSPs for all kits, libraries for popular functionality like DFU and

emWin, and a comprehensive array of example applications to get you started.

Figure 1 illustrates an application-level block diagram for a real-world use case using XMC7000 MCU.

https://www.cypress.com/products/modustoolbox-software-environment
https://github.com/Infineon/modustoolbox-software
TBD

Application Note 4 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Introduction

SAR ADC

10 x CAN FDCAN Device

SRAM 1024 KB
2 x ETHETH Device

GPI Os

 Security Boot

SDHC

XMC7000

Motor

Arm
Cortex® - M7 350 MHz

®

Arm
Cortex® - M7 350 MHz

®

Arm
Cortex® - M0 100 MHz

®

Motor control

SCB (UART)

SMIF (Quad – SPI)

Temperature
sensor

AudioI OSS x 3 LEDs

12S TDM I n / Out

Code flash
8384 KB

Work flash
256 KB

Wi – Fi 802.11n

Wi – Fi/Bluetooth®
device

BR/Bluetooth® LE
MAC, PHY

(Bluetooth® 5.1)

NOR
flash

Figure 1 Application-level block diagram using XMC7000 MCU

XMC7000 MCU is a highly capable and flexible solution. For example, the real-world use case in Figure 1 takes

advantage of these features:

• A buck converter for ultra-low-power operation

• An analog front end (AFE) within the device to condition and measure sensor outputs such as ambient light
sensor

• Serial Communication Blocks (SCBs) to interface with multiple digital sensors such as motion sensors

• Programmable digital logic (smart I/O) and peripherals (Timer Counter PWM or TCPWM) to drive the motor

and LEDs respectively

• Up to 10 CAN FD channels with increased data rate (up to 8 Mbps) supports all the requirement of CAN FD
specification V1.0 for non-ISO CAN FD

• Up to two 10/100/1000 Mbps Ethernet MAC interfaces conforming to IEEE-802.3az supports
MII/RMII/RGMII/AVB/PTP PHY interfaces

• SDIO interface to a Wi-Fi/Bluetooth® device to provide IoT cloud connectivity

• Product security features managed by CM0+ CPU and application features executed by CM7 CPUs

There are two product lines in XMC7000. Table 1 provides overview of different product lines:

Application Note 5 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Introduction

Table 1 XMC7000 MCU product lines

Device series Details

XMC7100 Triple-core architecture: 250-MHz Arm® Cortex®-M7 and 100-MHz Cortex®-

M0+

4-MB flash, 768-KB RAM

Packages: 100/144/176 TEQFP, 272 BGA

XMC7200 Triple-core architecture: 350-MHz Arm® Cortex®-M7 and 100-MHz Cortex®-

M0+

8-MB flash, 1-MB RAM

Packages: 176 TEQFP, 272 BGA

Note: Not all the features available in all the devices in a product line. See the device datasheets for
more details.

This application note introduces you to the capabilities of the XMC7000 MCU, gives an overview of the

development ecosystem, and gets you started with a simple ‘Hello World’ application wherein you learn to use
the XMC7000 MCU. We will show you how to create the application from an empty starter application, but the
completed design is available as a code example for ModusToolbox™ on GitHub.

For hardware design considerations, see Hardware design guide for the XMC7000 Family.

https://github.com/Infineon/mtb-example-psoc6-hello-world

Application Note 6 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Development ecosystem

2 Development ecosystem

2.1 XMC7000 resources

A wealth of data available here helps you to select the right XMC™ device and quickly and effectively integrate it
into your design. For a comprehensive list of XMC7000 MCU resources, see How to design with XMC7000 MCU.
The following is an abbreviated list of resources for XMC7000 MCU.

• Overview: XMC7000 MCU webpage

• Product selectors: XMC7000 MCU

• Datasheets describe and provide electrical specifications for each device family.

• Application notes and code examples cover a broad range of topics, from basic to advanced level. You can

also browse our collection of code examples. See Code examples.

• Technical reference manuals (TRMs) provide detailed descriptions of the architecture and registers in
each device family.

• XMC7000 MCU programming specification provides the information necessary to program the nonvolatile
memory of XMC7000 MCU devices.

• Development tools: Many low-cost kits are available for evaluation, design, and development of different

applications using XMC7000 MCUs.

• Technical Support: XMC7000 community forum, knowledge base articles

2.2 Firmware/application development

There are one development platforms that you can use for application development with XMC7000 MCU:

• ModusToolbox™: ModusToolbox™ software includes configuration tools, low-level drivers, middleware

libraries, and operating system support, as well as other packages that enable you to create MCU and
wireless applications. It also includes an Eclipse IDE, which provides an integrated flow with all the

ModusToolbox™ tools.

ModusToolbox™ supports stand-alone device and middleware configurators that are fully integrated into

the Eclipse IDE. Use the configurators to set the configuration of different blocks in the device and generate
code that can be used in firmware development. ModusToolbox™ supports all XMC7000 MCU devices. It is
recommended that you use ModusToolbox™ for all application development for XMC7000 MCUs. See the
ModusToolbox™ user guide for more information.

Libraries and enablement software are available at the GitHub site.

ModusToolbox™ tools and resources can also be used in the command line. See the “Using command-line”

section in the ModusToolbox™ user guide for detailed documentation.

2.2.1 Choosing an IDE

ModusToolbox™ software, the latest-generation toolset, includes the Eclipse IDE and therefore is supported
across Windows, Linux, and macOS platforms. Eclipse IDE for ModusToolbox™ is integrated with quick

launchers for tools and design configurators in the Quick Panel. ModusToolbox™ also supports third-party IDEs,

including Visual Studio Code, Arm® MDK (µVision), and IAR Embedded Workbench. The tool supports all
XMC7000 MCU devices. The associated hardware and middleware configurators also work on all three host
operating systems.

Use ModusToolbox™ to take advantage of the power and extensibility of an Eclipse-based IDE. ModusToolbox™

is supported on Windows, Linux, and macOS. It is recommended to use ModusToolbox™.

https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/
TBD_KBA
TBD
TBD
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://github.com/infineon
TBD
TBD
TBD
TBD
https://www.cypress.com/ModusToolboxUserGuide
https://github.com/infineon
https://www.cypress.com/ModusToolboxUserGuide

Application Note 7 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Development ecosystem

2.2.2 ModusToolbox™ software

ModusToolbox™ is a set of tools and software that enables an immersive development experience for creating
converged MCU and wireless systems and enables you to integrate our devices into your existing development

methodology. To achieve this goal, ModusToolbox™ leverages popular third-party ecosystems such as
FreeRTOS and Arm® Mbed, and adds specific features for Wi-Fi, Bluetooth®, CAPSENSE™, and security.

Eclipse IDE for ModusToolbox™ is a multi-platform development environment that supports application
configuration and development.

Figure 2 shows a high-level view of the tools/resources included in the ModusToolbox™ software. For a more
in-depth overview of the ModusToolbox™ software, see ModusToolbox™ user guide.

Figure 2 ModusToolbox™ software

ModusToolbox™ installer includes the design configurators and tools, and the build system infrastructure.

The build system infrastructure includes the new project creation wizard that can be run independent of the
Eclipse IDE, the make infrastructure, and other tools.

All the ModusToolbox™ development flows depend on the provided low-level resources. These include:

https://www.cypress.com/ModusToolboxUserGuide

Application Note 8 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Development ecosystem

• Board Support Packages (BSP) – A BSP is the layer of firmware containing board-specific drivers and other
functions. The board support package is a set of libraries that provide APIs to initialize the board and

provide access to board level peripherals. It includes low-level resources such as Peripheral Driver Library
(PDL) for XMC7000 MCU and has macros for board peripherals. It uses the HAL to configure the board.

Custom BSPs can be created to enable support for end-application boards. Refer to the “Board Support
Packages” section in ModusToolbox™ user guide for more information.

• Hardware Abstraction Layer (HAL) – HAL provides a high-level interface to configure and use hardware
blocks on MCUs. It is a generic interface that can be used across multiple product families. The focus on

ease-of-use and portability means that the HAL does not expose all the low-level peripheral functionality.
The HAL wraps the lower-level drivers (like XMC7000 PDL) and provides a high-level interface to the MCU.
The interface is abstracted to work on any MCU. This helps you write application firmware independent of

the target MCU.

The HAL can be combined with platform-specific libraries (such as XMC7000 PDL) within a single application.

You can leverage the HAL's simpler and more generic interface for most of an application, even if one
portion requires finer-grained control.

• XMC7000 Peripheral Driver Library (PDL) – The PDL integrates device header files, startup code, and
peripheral drivers into a single package. The PDL supports the XMC7000 MCU device family. The drivers

abstract the hardware functions into a set of easy-to-use APIs. These are fully documented in the PDL API
Reference.

The PDL reduces the need to understand register usage and bit structures, thus easing software
development for the extensive set of peripherals in the XMC7000 MCU series. You configure the driver for

your application, and then use API calls to initialize and use the peripheral.

• Extensive middleware libraries that provides specific capabilities to an application. All the middleware is

delivered as libraries and via GitHub repositories.

2.2.3 XMC7000 software resources

The XMC7000 software includes driver and middleware configurators to get you started developing firmware
with XMC7000 MCU. It contains configurators, drivers, libraries, middleware, as well as various utilities,
makefiles, and scripts. It also includes relevant drivers, middleware, and examples for use with industrial
applications. You may use any or all tools in any environment you prefer.

2.2.3.1 Configurators

ModusToolbox™ software provides graphical applications called configurators that make it easier to configure

a hardware block. For example, instead of having to search through all the documentation to configure a serial
communication block as a UART with a desired configuration, open the appropriate configurator and set the
baud rate, parity, and stop bits. Upon saving the hardware configuration, the tool generates the "C" code to

initialize the hardware with the desired configuration.

Configurators are independent of each other, but they can be used together to provide flexible configuration

options. They can be used stand alone, in conjunction with other tools, or within a complete IDE. Configurators
are used for:

• Setting options and generating code to configure drivers

• Setting up connections such as pins and clocks for a peripheral

• Setting options and generating code to configure middleware

For XMC7000 MCU applications, the available configurators include:

https://www.cypress.com/ModusToolboxUserGuide
https://github.com/Infineon/mtb-hal-cat1
https://github.com/Infineon/mtb-pdl-cat1

Application Note 9 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Development ecosystem

• Device Configurator: Set up the system (platform) functions, as well as the basic peripherals (For example,
UART, Timer, and PWM).

• QSPI Configurator: Configure external memory and generate the required code.

• Smart I/O Configurator: Configure the smart I/O.

Each of the above configurators create their own files (e.g.: design.cyqspi for QSPI). The configurator files

(design.modus or design.cyqspi) are usually provided with the BSP. When an application is created based on a
BSP, the files are copied into the application. You can also create custom device configurator files for an
application and override the ones provided by the BSP.

2.2.3.2 Library management for XMC7000 MCU

With the release of ModusToolbox™ v3.0, applications can optionally share board support packages (BSPs) and

libraries. If needed, different applications can use different versions of the same BSP/library. The file types
associated with libraries using this flow have a .mtb extension.

Going further, Section 4 of this document describes creating a new application using this Flow.

For more information on MTB Flow, see the Library Manager user guide located at <install_dir>

/ModusToolbox/tools_<version>/library-manager/docs/library-manager.pdf.

2.2.3.3 Software development for XMC7000 MCU

Significant source code and tools are provided to enable software development for XMC7000 MCUs. You use
tools to specify how you want to configure the hardware, generate code for that purpose which you use in your

firmware, and include various middleware libraries for additional functionality, like FreeRTOS. This source code
makes it easier to develop the firmware for supported devices. It helps you quickly customize and build

firmware without the need to understand the register set.

In the ModusToolbox™ environment, you use configurators to configure either the device, or a middleware

library, like QSPI functionality.

The XMC7000 Peripheral Driver Library code is delivered as the mtb-pdl-cat1 library. Middleware is delivered as

separate libraries for each feature/function.

Whether you use Eclipse IDE, a third-party IDE, or the command line, firmware developers who wish to work at

the register level should refer to the driver source code from the PDL. The PDL includes all the device-specific
header files and startup code you need for your project. It also serves as a reference for each driver. Because
the PDL is provided as source code, you can see how it accesses the hardware at the register level.

Some devices do not support particular peripherals. The PDL is a superset of all the drivers for any supported

device. This superset design means:

• All API elements needed to initialize, configure, and use a peripheral are available.

• The PDL is useful across various XMC7000 MCU devices, regardless of available peripherals.

• The PDL includes error checking to ensure that the targeted peripheral is present on the selected device.

This enables the code to maintain compatibility across members of the XMC7000 MCU device family as long as
the peripherals are available. A device header file specifies the peripherals that are available for a device. If you

write code that attempts to use an unsupported peripheral, you will get an error at compile time. Before writing
code to use a peripheral, consult the datasheet for the particular device to confirm support for that peripheral.

As Figure 3 shows, with the Eclipse IDE for ModusToolbox™ software, you can:

1. Choose a board support package (BSP).

https://www.cypress.com/ModusToolboxLibraryManager
https://github.com/Infineon/mtb-pdl-cat1

Application Note 10 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Development ecosystem

2. Create a new application based on a list of starter applications, filtered by kit.

3. Add middleware.

4. Develop your application firmware using the HAL or PDL for XMC7000 MCU.

Figure 3 Eclipse IDE for ModusToolbox™ resources and middleware

2.3 Support for other IDEs

You can develop firmware for XMC7000 MCUs using your favorite IDE such as IAR Embedded Workbench or

Visual Studio Code.

ModusToolbox™ configurators are standalone tools that can be used to set up and configure XMC7000 MCU

resources and other middleware components without using the Eclipse IDE. The device configurator and
middleware configurators use the design.x files within the application workspace. You can then point to the
generated source code and continue developing firmware in your IDE.

https://www.iar.com/iar-embedded-workbench/

Application Note 11 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Development ecosystem

If there is a change in the device configuration, edit the design.x files using the configurators and regenerate the
code for the target IDE. It is recommended that you generate resource configurations using the configuration

tools provided with ModusToolbox™ software.

See AN225588 – Using ModusToolbox™ software with a third-party IDE for details.

2.4 FreeRTOS support with ModusToolbox™

Adding native FreeRTOS support to a ModusToolbox™ application project is like adding any library or
middleware. You can import the FreeRTOS middleware into your application by using the Library Manager.
Select the application project and click the Library Manager link in the Quick Panel. Select freertos from the
Add Library > Core dialog, as Figure 4 shows.

The .mtb file pointing to the FreeRTOS middleware is added to the application project. The middleware content

is also downloaded and placed inside the corresponding folder called freertos. To continue working with

FreeRTOS, follow the steps in the Quick Start section of FreeRTOS documentation.

Figure 4 Import FreeRTOS middleware in ModusToolbox™ application

2.5 Programming/debugging

All XMC7000 kits have a KitProg3 onboard programmer/debugger. It supports Cortex® Microcontroller Software
Interface Standard - Debug Access Port (CMSIS-DAP). See the KitProg3 user guide for details.

The Eclipse IDE requires KitProg3 and uses the OpenOCD protocol for debugging XMC7000 MCU applications. It

also supports GDB debugging using industry standard probes like the Segger J-Link.

ModusToolbox™ includes the fw-loader command-line tool to update and switch the KitProg firmware from

KitProg2 to KitProg3. Refer to the XMC7000 Programming/Debugging - KitProg Firmware Loader section in
the Eclipse IDE for ModusToolbox™ user guide for more details.

For more information on debugging firmware on XMC™ devices with ModusToolbox™, refer to the “Program
and Debug” section in the Eclipse IDE for ModusToolbox™ user guide.

http://www.cypress.com/node/611401
https://github.com/Infineon/freertos/blob/master/README.md
https://www.cypress.com/documentation/development-kitsboards/kitprog-user-guide
http://openocd.org/
https://www.segger.com/products/debug-probes/j-link/

Application Note 12 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Development ecosystem

2.6 XMC7000 MCU development kits

Table 2 Development kits

Product line Development kits

Performance XMC 7200 Evaluation Kit (KIT_XMC72_EVK)

For the complete list of kits for the XMC7000 MCU along with the shield modules, see the Microcontroller
(MCUs) kits page.

TBD
TBD
TBD

Application Note 13 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Device features

3 Device features

XMC7000 MCU product lines have extensive feature sets as shown in Figure 5. The following is a list of its major
features. For more information, see the device datasheet, the technical reference manual (TRM), and the
section on References.

• CPU Subsystem

− One or two 250-MHz/350-MHz Arm® Cortex®-M7 and 100-MHz Arm® Cortex®-M0+

− Inter-processor communication supported in hardware

− Three DMA controllers

• Integrated memories

− Up to 8384 KB of code flash with an additional 256 KB work flash

− Up to 1024 KB of SRAM selectable retention granularity

• Cryptography engine

− Supports Enhanced Secure Hardware Extension (eSHE) and Hardware Security Module (HSM)

− Secure boot and authentication

− AES: 128-bit blocks, 128-/192-/256-bit keys

− 3DES: 64-bit blocks, 64-bit key

− Vector unit supporting asymmetric key cryptography such as Rivest-Shamir-Adleman (RSA) and Elliptic

Curve (ECC)

− SHA-1/2/3: SHA-512, SHA-256, SHA-160 with variable length input data

− CRC: supports CCITT CRC16 and IEEE-802.3 CRC32

− True random number generator (TRNG) and pseudo random number generator (PRNG)

− Galois/Counter Mode (GCM)

• Safety for application

− Memory Protection Unit (MPU)

− Shared Memory Protection Unit (SMPU)

− Peripheral Protection Unit (PPU)

− Watchdog Timer (WDT)

− Multi-counter Watchdog Timer (MCWDT)

− Low-voltage Detector (LVD)

− Brown-out Detection (BOD)

− Overvoltage Detection (OVD)

− Clock Supervisor (CSV)

− Hardware error correction (SECDED ECC) on all safety-critical memories (SRAM, flash, TCM)

• Low-power 2.7-V to 5.5-V operation

− Low-power Active, Sleep, Low-power Sleep, DeepSleep, and Hibernate modes for fine-grained power

management

− Configurable options for robust BOD

• Wakeup

− Up to two pins to wake from Hibernate mode

− Up to 220 GPIO pins to wake from Sleep modes

− Event Generator, SCB, Watchdog Timer, RTC alarms to wake from DeepSleep modes

Application Note 14 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Device features

• Clocks

− Internal Main Oscillator (IMO)

− Internal Low-Speed Oscillator (ILO)

− External Crystal Oscillator (ECO)

− Watch Crystal Oscillator (WCO)

− Phase-Locked Loop (PLL)

− Frequency-Locked Loop (FLL)

• Communication interfaces

− Up to 10 CAN FD channels

− Up to 11 runtime-reconfigurable SCB (serial communication block) channels, each configurable as I2C,
SPI, or UART

− Up to two 10/100/1000 Mbps Ethernet MAC interfaces conforming to IEEE-802.3az

• External memory interface

− One SPI (Single, Dual, Quad, or Octal) or HYPERBUS™ interface

− On-the-fly encryption and decryption

− Execute-In-Place (XIP) from external memory

• SDHC interface

− One Secure Digital High Capacity (SDHC) interface supporting embedded MultiMediaCard (eMMC), Secure
Digital (SD), or SDIO (Secure Digital Input Output)

− Data rates up to SD High-Speed 50 MHz, or eMMC 52 MHz DDR

• Audio interface

− Three Inter-IC Sound (I2S) Interfaces (based on the NXP I2S bus specification) for connecting digital audio
devices

− I2S, left justified, or Time Division Multiplexed (TDM) audio formats

− Independent transmit or receive operation, each in master or slave mode

• Timers

− Up to 102 blocks of 16-bit and 16 blocks of 32-bit Timer/Counter Pulse-Width Modulator (TCPWM)

− Up to 16 Event Generation (EVTGEN) timers supporting cyclic wakeup from DeepSleep

• Real time clock (RTC)

− Year/Month/Date, Day-of-week, Hour:Minute:Second fields

− 12- and 24-hour formats

− Automatic leap-year correction

• I/O

− Clock supervisor (CSV)

− Three I/O types: GPIO_STD/ GPIO_ENH/ HSIO_STD

• Smart I/O

− Up to five smart I/O blocks, which can perform Boolean operations on signals going to and from I/Os

− Up to 36 I/Os (GPIO_STD) supported

• I/O subsystem

− Up to 220 GPIOs with programmable drive modes, drive strength, slew rates

− Two ports with smart I/O that can implement Boolean operations

Application Note 15 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Device features

Figure 5 XMC7000 MCU block diagram

• Programmable analog

− Three SAR A/D converters with up to 99 external channels (96 I/Os + 3 I/Os for motor control)

− Each ADC supports 12-bit resolution and sampling rates of up to 1 Msps

− Each ADC also supports six internal analog inputs

− Each ADC supports addressing of external multiplexers

− Each ADC has a sequencer supporting autonomous scanning of configured channels

− Synchronized sampling of all ADCs for motor-sense applications

Application Note 16 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

4 My first XMC7000 MCU design using Eclipse IDE for

ModusToolbox™ software

This section does the following:

• Demonstrate how to build a simple XMC7000 MCU-based design and program it on to the development kit

• Make it easy to learn XMC7000 MCU design techniques and how to use the Eclipse IDE for ModusToolbox™

software

4.1 Prerequisites

Before you get started, make sure that you have the appropriate development kit for your XMC7000 MCU
product line, and have installed the required software. You also need internet access to the GitHub repositories

during project creation.

4.1.1 Hardware

• The design is developed for XMC7200 Evaluation Kit. However, you can build the projects for other

development kits. See the Using these instructions section.

4.1.2 Software

• ModusToolbox™ 3.0 or above

After installing the software, refer to the ModusToolbox™ user guide to get an overview of the software.

4.2 Using these instructions

These instructions are grouped into several sections. Each section is devoted to a phase of the application

development workflow. The major sections are:

• Part 1: Create a new application

• Part 2: View and modify the design

• Part 3: Write firmware

• Part 4: Build the application

• Part 5: Program the device

• Part 6: Test your design

This design is developed for the XMC7200 Evaluation Kit. You can use other supported kits to test this example
by selecting the appropriate kit while creating the application.

4.3 About the design

This design uses the CM7 CPU of the XMC7000 MCU to execute two tasks: UART communication and LED

control.

After device reset, the CM7 CPU uses the UART to print a “Hello World” message to the serial port stream, and
starts blinking the user LED on the kit. When you press the Enter key on the serial console, the blinking is

paused or resumed.

TBD
http://www.cypress.com/modustoolbox
https://www.cypress.com/ModusToolboxUserGuide
TBD

Application Note 17 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

4.4 Part 1: Create a new application

This section takes you on a step-by-step guided tour of the new application process. It uses the ‘Empty App’
starter application and guides you through the design development stages, and programming.

If you are familiar with developing projects with ModusToolbox™, you can use the ‘Hello World’ starter
application directly. It is a complete design, with all the firmware written for the supported kits. You can walk

through the instructions and observe how the steps are implemented in the code example.

If you start from scratch and follow all the instructions in this application note, you use the code example as a
reference while following the instructions.

Launch Eclipse IDE for ModusToolbox™ to get started. Please note that Eclipse IDE for ModusToolbox™ software
needs access to the internet to successfully clone the starter application onto your machine.

1. Select a new workspace.

At launch, Eclipse IDE for ModusToolbox™ presents a dialog to choose a directory for use as the workspace
directory. The workspace directory is used to store workspace preferences and development artifacts. You
can choose an existing empty directory by clicking the Browse button, as Figure 6 shows. Alternatively, you

can type in a directory name to be used as the workspace directory along with the complete path, and

Eclipse IDE will create the directory for you.

Figure 6 Select a directory as the workspace

2. Create a new ModusToolbox™ application.

a) Click New Application in the Start group of the Quick Panel.

b) Alternatively, you can choose File > New > ModusToolbox Application, as Figure 7 shows.

The Eclipse IDE for ModusToolbox™ Application window appears.

Application Note 18 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

Figure 7 Create a New ModusToolbox™ Application

3. Select a target XMC7200 evaluation kit.

ModusToolbox™ speeds up the development process by providing BSPs that set various workspace/project
options for the specified development kit in the new application dialog.

a) In the Choose Board Support Package (BSP) dialog, choose the Kit Name that you have. The steps that
follow use KIT_XMC72_EVK. See Figure 8 for help with this step.

b) Click Next.

Figure 8 Choose target hardware

c) In the Starter Application dialog, select Empty App starter application, as Figure 9 shows.

Application Note 19 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

d) In the Name field, type in a name for the application, such as Hello_World. You can choose to leave the
default name if you prefer.

e) Click Create to create the application, as Figure 9 shows, wait for the Project Creator to automatically
close once the project is successfully created.

Figure 9 Choose starter application

You have successfully created a new ModusToolbox™ application for a XMC7000 MCU.

The BSP uses XMC7200D-E272K8384 as the default device that is mounted on the XMC7200 Evaluation Kit.

If you are using custom hardware based on XMC7000 MCU, or a different XMC7000 MCU part number, see the
Creating your Own BSP section in the ModusToolbox™ user guide. The guide is also available under
ide_3.0>docs folder of the ModusToolbox™ installation directory.

4.5 Part 2: View and modify the design

Figure 10 shows the ModusToolbox™ project explorer interface displaying the structure of the application
project.

XMC7000 MCU consists of three cores: one CM0+ core and two CM7 cores. This application note shows the
firmware development using the CM7 core with ModusToolbox™ software.

A project folder consists of various subfolders – each denoting a specific aspect of the project.

a) An application project contains a Makefile which is typically at the root folder. It has instructions on how to
recreate the project. This file also contains the set of directives that the make tool uses to compile and link
the application project. There can be more than one project in an application, and each dependent project

usually resides within its own folder within the application folder and contains its own Makefile.

b) The bsps folder contains all the configuration files generated by the device and peripheral configurators are
included in the GeneratedSource folder of the BSP and are prefixed with cycfg_. These files contain the

TBD
https://www.cypress.com/ModusToolboxUserGuide

Application Note 20 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

design configuration as defined by the BSP. You can view and modify the design configuration by clicking
the Device Configurator link in the Quick Panel. However, note that if you upgrade the BSP library to a

newer version, the manual edits done to the design.x files are lost. You can also create custom Device
Configurator files for an application and override the ones provided by the BSP. See the “Modifying the BSP

configuration for a single application” section in the ModusToolbox™ user guide for more details.

The BSP folder also contains the linker scripts and the startup code for the XMC7000 MCU device used on

the board.

c) The build folder contains all the artifacts resulting from the make build of the project. The output files are

organized by target BSPs.

Figure 10 Project Explorer view

d) The deps folder contains .mtb files, which provide the location from which ModusToolbox™ software pulls

the BSP/library that is directly referenced by the application. These files typically contain the GitHub

location of the entire library. The .mtb files also contains a git commit hash or tag that tells which version of
the library is to be fetched and a path as to where the library should be stored.

For example, the TARGET_KIT_XMC72_EVK.mtb file points to http://git-ore.aus.cypress.com/repo-
staging/TARGET_KIT_XMC72_EVK#latest-v1.X#$$ASSET_REPO$$/TARGET_KIT_XMC72_EVK/latest-

https://www.cypress.com/ModusToolboxUserGuide

Application Note 21 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

v1.X.The latest-v1.X tag in the link denotes the specific release of the BSP. The variable $$ASSET_REPO$$
points to the root of the shared location. If the library has to be local to the application instead of shared,

use $$LOCAL$$ instead of $$ASSET_REPO$$.

Similarly, retarget-io.mtb points to https://github.com/infineon/retarget-io#latest-

v1.X#$$ASSET_REPO$$/retarget-io/latest-v1.X.

e) The libs folder also contains .mtb files, these point to libraries that are included indirectly as a dependency

of a BSP or another library. For each indirect dependency, the Library Manager places an .mtb file in this
folder. These files have been populated based on the targets available in deps folder.

For example, using the BSP lib file, TARGET_KIT_XMC72_EVK.mtb populates the libs folder with the following
.mtb files: core-lib.mtb, core-make.mtb, mtb-hal-cat1.mtb, mtb-pdl-cat1.mtb, recipe-make-cat1c.mtb.

The libs folder contains the mtb.mk file, which stores the relative paths of the all the libraries required by the

application. The build system uses this file to find all the libraries required by the application.

f) By default, when creating a new application or adding a BSP/library to an existing application and

specifying it as shared, all BSPs/libraries are placed in an mtb_shared directory adjacent to the application
directories.

The mtb_shared folder is shared between different applications that use the same versions of the
BSP/library.

Of interest are the configuration files that are in the COMPONENT_BSP_x folder. Click on the Device
Configurator link in the Quick Panel. Figure 11 shows the resulting window called the Device Configurator

window. You can also double-click open the other design.x files to open them in their respective configurators

or click the corresponding links in the Quick Panel.

Figure 11 design.modus overview

The Device Configurator window provides a Resources Categories pane. Here you can choose between

different resources available in the device such as peripherals, pins, and clocks from the List of Resources.

You can choose how a resource behaves by choosing a Personality for the resource. For example, a Serial

Communication Block (SCB) resource can have a EZI2C, I2C, SPI, or UART personalities. The Alias is your
name for the resource, which is used in firmware development. One or more aliases can be specified by using a
comma to separate them (with no spaces)

The Parameters pane is where you enter the configuration parameters for each enabled resource and the
selected personality. The Code Preview pane shows the configuration code generated per the configuration

parameters selected. This code is populated in the cycfg_ files in the GeneratedSource folder. Any errors,
warnings, and information messages arising out of the configuration are displayed in the Notices pane.

https://github.com/infineon/retarget-io#latest-v1.X
https://github.com/infineon/retarget-io#latest-v1.X
https://github.com/cypresssemiconductorco/core-lib
https://github.com/cypresssemiconductorco/core-make
https://github.com/cypresssemiconductorco/mtb-hal-cat1
https://github.com/cypresssemiconductorco/mtb-pdl-cat1
https://github.com/cypresssemiconductorco/recipe-make-cat1a

Application Note 22 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

The application project contains relevant files that help you create an application for the CM7 CPU (main.c).

At this point in the development process, we are ready to add the required middleware to the design. The only
middleware required for the Hello World application is the retarget-io library.

Figure 12 Add the retarget-io middleware

1. Add retarget-io middleware.

In this step, you will add the retarget-io middleware to redirect standard input and output streams to the

UART configured by the BSP. The initialization of the middleware will be done in main.c code.

a) In the Quick Panel, click on the Library Manager link.

b) In the subsequent dialog, select the Add Library tab.

c) Under Peripherals, select and enable retarget-io, and click OK.

d) Click Update.

The files necessary to use the retarget-io middleware are added in the mtb_shared/retarget_io folder; the

.mtb file is also added to the deps folder, as Figure 12 shows.

2. Configuration of UART, timer peripherals, pins and system clocks

The configuration of the debug UART peripheral, timer peripheral, pins and system clocks can be done

directly in the code using the function APIs provided by BSP and HAL. See Part 3: Write firmware.

4.6 Part 3: Write firmware

At this point in the development process, you have created an application, with the assistance of an application
template and modified it to add the retarget-io middleware. In this part, you write the firmware that
implements the design functionality.

If you are working from scratch using the empty XMC7000 starter application, you can copy the respective
source code to the main.c of the application project from the code snippet provided in this section. If you are

using the Hello World code example, all the required files are already in the application.

Firmware flow

We now examine the code in the main.c file of the application. Figure 13 shows the firmware flowchart.

https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X

Application Note 23 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

After reset, resource initialization for this example is performed by the CM7 CPU. It configures the system
clocks, pins, clock to peripheral connections, and other platform resources.

After reset, the clocks and system resources are initialized by the BSP initialization function. The retarget-io
middleware is configured to use the debug UART, and the user LED is initialized. The debug UART prints a
“Hello World!” message on the terminal emulator – the onboard KitProg3 acts the USB-UART bridge to create

the virtual COM port. A timer object is configured to generate an interrupt every 1000 milliseconds. At each
timer interrupt, the CM7 CPU toggles the LED state on the kit.

The firmware is designed to accept ‘Enter’ key as an input; on every press of the ‘Enter’ key, the firmware starts

or stops the blinking of the LED.

Note that the application code uses BSP/HAL/middleware functions to execute the intended functionality.

cybsp_init()- This BSP function sets up the HAL hardware manager and initializes all the system resources

of the device including but not limited to the system clocks and power regulators.

cy_retarget_io_init()- This function from the retarget-io middleware uses the aliases set up for debug

UART pins to configure the debug UART with a standard baud rate of 115200 and redirects the input/output
stream to the debug UART.

cyhal_gpio_init()- This function from the GPIO HAL initializes the physical pin to drive the LED. The LED

used is derived from the BSP definition.

timer_init()- This function wraps a set of timer HAL function calls to instantiate and configure a timer. It

also sets up a callback for the timer interrupt.

Copy the following code snippet to main.c of your application project.

Code Listing 1

#include "cyhal.h"

#include "cybsp.h"

#include "cy_retarget_io.h"

/***

* Macros

***/

/* LED blink timer clock value in Hz */

#define LED_BLINK_TIMER_CLOCK_HZ (10000)

/* LED blink timer period value */

#define LED_BLINK_TIMER_PERIOD (9999)

/***

* Function Prototypes

***/

void timer_init(void);

static void isr_timer(void *callback_arg, cyhal_timer_event_t event);

/***

* Global Variables

***/

bool timer_interrupt_flag = false;

bool led_blink_active_flag = true;

https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X

Application Note 24 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

Code Listing 1

/* Variable for storing character read from terminal */

uint8_t uart_read_value;

/* Timer object used for blinking the LED */

cyhal_timer_t led_blink_timer;

/***

* Function Name: main

**

* Summary:

* This is the main function. It sets up a timer to trigger a

* periodic interrupt. The main while loop checks for the status of a flag set

* by the interrupt and toggles an LED at 1Hz to create an LED blinky. The

* while loop also checks whether the 'Enter' key was pressed and

* stops/restarts LED blinking.

*

* Parameters:

* none

*

* Return:

* int

*

***/

int main(void)

{

 cy_rslt_t result;

 /* Initialize the device and board peripherals */

 result = cybsp_init();

 /* Board init failed. Stop program execution */

 if (result != CY_RSLT_SUCCESS)

 {

 CY_ASSERT(0);

 }

 /* Enable global interrupts */

 __enable_irq();

 /* Initialize retarget-io to use the debug UART port */

 result = cy_retarget_io_init(CYBSP_DEBUG_UART_TX, CYBSP_DEBUG_UART_RX,

 CY_RETARGET_IO_BAUDRATE);

 /* retarget-io init failed. Stop program execution */

 if (result != CY_RSLT_SUCCESS)

 {

 CY_ASSERT(0);

 }

 /* Initialize the User LED */

 result = cyhal_gpio_init(CYBSP_USER_LED, CYHAL_GPIO_DIR_OUTPUT,

 CYHAL_GPIO_DRIVE_STRONG, CYBSP_LED_STATE_OFF);

 /* GPIO init failed. Stop program execution */

 if (result != CY_RSLT_SUCCESS)

 {

 CY_ASSERT(0);

 }

Application Note 25 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

Code Listing 1

 /* \x1b[2J\x1b[;H - ANSI ESC sequence for clear screen */

 printf("\x1b[2J\x1b[;H");

 printf("****************** "

 "HAL: Hello World! Example "

 "****************** \r\n\n");

 printf("Hello World!!!\r\n\n");

 printf("For more projects, "

 "visit our code examples repositories:\r\n\n");

 printf("https://github.com/Infineon/"

 "Code-Examples-for-ModusToolbox-Software\r\n\n");

 /* Initialize timer to toggle the LED */

 timer_init();

 printf("Press 'Enter' key to pause or "

 "resume blinking the user LED \r\n\r\n");

 for (;;)

 {

 /* Check if 'Enter' key was pressed */

 if (cyhal_uart_getc(&cy_retarget_io_uart_obj, &uart_read_value, 1)

 == CY_RSLT_SUCCESS)

 {

 if (uart_read_value == '\r')

 {

 /* Pause LED blinking by stopping the timer */

 if (led_blink_active_flag)

 {

 cyhal_timer_stop(&led_blink_timer);

 printf("LED blinking paused \r\n");

 }

 else /* Resume LED blinking by starting the timer */

 {

 cyhal_timer_start(&led_blink_timer);

 printf("LED blinking resumed\r\n");

 }

 /* Move cursor to previous line */

 printf("\x1b[1F");

 led_blink_active_flag ^= 1;

 }

 }

 /* Check if timer elapsed (interrupt fired) and toggle the LED */

 if (timer_interrupt_flag)

 {

 /* Clear the flag */

 timer_interrupt_flag = false;

 /* Invert the USER LED state */

 cyhal_gpio_toggle(CYBSP_USER_LED);

Application Note 26 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

Code Listing 1

 }

 }

}

/***

* Function Name: timer_init

**

* Summary:

* This function creates and configures a Timer object. The timer ticks

* continuously and produces a periodic interrupt on every terminal count

* event. The period is defined by the 'period' and 'compare_value' of the

* timer configuration structure 'led_blink_timer_cfg'. Without any changes,

* this application is designed to produce an interrupt every 1 second.

*

* Parameters:

* none

*

***/

 void timer_init(void)

 {

 cy_rslt_t result;

 const cyhal_timer_cfg_t led_blink_timer_cfg =

 {

 .compare_value = 0, /* Timer compare value, not used */

 .period = LED_BLINK_TIMER_PERIOD, /* Defines the timer period */

 .direction = CYHAL_TIMER_DIR_UP, /* Timer counts up */

 .is_compare = false, /* Don't use compare mode */

 .is_continuous = true, /* Run timer indefinitely */

 .value = 0 /* Initial value of counter */

 };

 /* Initialize the timer object. Does not use input pin ('pin' is NC) and

 * does not use a pre-configured clock source ('clk' is NULL). */

 result = cyhal_timer_init(&led_blink_timer, NC, NULL);

 /* timer init failed. Stop program execution */

 if (result != CY_RSLT_SUCCESS)

 {

 CY_ASSERT(0);

 }

 /* Configure timer period and operation mode such as count direction,

 duration */

 cyhal_timer_configure(&led_blink_timer, &led_blink_timer_cfg);

 /* Set the frequency of timer's clock source */

 cyhal_timer_set_frequency(&led_blink_timer, LED_BLINK_TIMER_CLOCK_HZ);

 /* Assign the ISR to execute on timer interrupt */

 cyhal_timer_register_callback(&led_blink_timer, isr_timer, NULL);

 /* Set the event on which timer interrupt occurs and enable it */

 cyhal_timer_enable_event(&led_blink_timer, CYHAL_TIMER_IRQ_TERMINAL_COUNT,

 7, true);

 /* Start the timer with the configured settings */

 cyhal_timer_start(&led_blink_timer);

Application Note 27 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

Code Listing 1

 }

/***

* Function Name: isr_timer

**

* Summary:

* This is the interrupt handler function for the timer interrupt.

*

* Parameters:

* callback_arg Arguments passed to the interrupt callback

* event Timer/counter interrupt triggers

*

***/

static void isr_timer(void *callback_arg, cyhal_timer_event_t event)

{

 (void) callback_arg;

 (void) event;

 /* Set the interrupt flag and process it from the main while(1) loop */

 timer_interrupt_flag = true;

}

Application Note 28 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

START

Initialize retarget-io to use

BSP s debug UART

Initialize clocks and

system resources

Print the message

 Hello World

on to UART terminal

Is Enter key

pressed?
No

On timer Interrupt

Set the timer interrupt flag

Exit Interrupt

Handler

Is timer interrupt

flag set?

Clear timer interrupt flag

&

Toggle LED state

Start the timer

Initialize the user LED

Yes

Initialize and start the

timer, register callback –

LED starts blinking

Was LED

blinking earlier?

Stop the timer

Yes

Yes

No

No

Figure 13 Firmware flowchart

This completes the summary of how the firmware works in the code example. Feel free to explore the source

files for a deeper understanding.

Application Note 29 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

4.7 Part 4: Build the application

This section shows how to build the application.

1. Build the application.

a) Select the application project in the Project Explorer window and click on the Build <name> Application
shortcut under the <name> group in the Quick Panel. It selects the Debug build configuration and

compiles/links all projects that constitute the application.

b) The Console view lists the results of the build operation, as Figure 14 shows.

Figure 14 Build the application

If you encounter errors, revisit prior steps to ensure that you accomplished all the required tasks.

Note: You can also use the command line interface (CLI) to build the application. See the “Using the
command-line” section in the ModusToolbox™ user guide. This document is located in the

/ide_<version>/docs/ folder in the ModusToolbox™ installation.

https://www.cypress.com/ModusToolboxUserGuide

Application Note 30 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

4.8 Part 5: Program the device

This section shows how to program the XMC7000 MCU device.

ModusToolbox™ software uses the OpenOCD protocol to program and debug applications on XMC7000 MCU
devices. For ModusToolbox™ software to identify the device on the kit, the kit must be running KitProg3. See
Programming/debugging for details.

If you are using a development kit with a built-in programmer, connect the board to your computer using the

USB cable.

If you are developing on your own hardware, you may need a hardware programmer/debugger; for example, a

CY8CKIT-005 MiniProg4.

1. Program the application.

a) Connect to the board and perform the following step.

b) Select the application project and click on the <application name> Program (KitProg3_MiniProg4)

shortcut under the Launches group in the Quick Panel, as Figure 15 shows. The IDE will select and run
the appropriate run configuration. Note that this step will also perform a build if any files have been

modified since the last build.

Figure 15 Programming an application to a device

http://www.cypress.com/an79953

Application Note 31 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

The Console view lists the results of the programming operation, as Figure 16 shows.

Figure 16 Console – programming results

4.9 Part 6: Test your design

This section describes how to test your design.

Follow the steps below to observe the output of your design. This note uses Tera Term as the UART terminal
emulator to view the results. You can use any terminal of your choice to view the output.

1. Select the serial port.

Launch Tera Term and select the USB-UART COM port as Figure 17 shows. Note that your COM port number
may be different.

Figure 17 Selecting the KitProg3 COM port in Tera Term

Application Note 32 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

2. Set the baud rate.

Set the baud rate to 115200 under Setup > Serial port as Figure 18 shows.

Figure 18 Configuring the baud rate in Tera Term

3. Reset the device.

Press the reset switch (SW1) on the kit. A message appears on the terminal as Figure 19 shows. The user
LED on the kit will start blinking.

Figure 19 Printed UART message

4. Pause/resume LED blinking functionality.

Press the Enter Key to pause/resume blinking the LED. When the LED blinking is paused, a corresponding
message will be displayed on the terminal as Figure 20 shows.

Application Note 33 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

My first XMC7000 MCU design using Eclipse IDE for ModusToolbox™ software

Figure 20 Printed UART message

Application Note 34 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Summary

5 Summary

This application note explored the XMC7000 MCU device architecture and the associated development tools.
XMC7000 MCU is a truly programmable embedded system-on-chip with configurable analog and digital
peripheral functions, memory, and a triple-CPU system on a single chip. The integrated features and low-power

modes make XMC7000 MCU an ideal choice for industrial drives, robotics, transportation, and other related
applications.

Application Note 35 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

References

References

For a complete and updated list of XMC7000 MCU code examples, please visit our GitHub. For more XMC7000

MCU-related documents, please visit our XMC7000 MCU product web page.

Table 3 lists the system-level and general application notes that are recommended for the next steps in
learning about XMC7000 MCU and ModusToolbox™.

Table 3 General and system-level application notes

Document Document name

AN234224 Hardware design guide for the XMC7000 family

AN225588 Using ModusToolbox™ software with a third-party IDE

AN234021 Low power mode procedure in XMC7000 family

Table 4 lists the application notes (AN) for specific peripherals and applications.

Table 4 Documents related to XMC7000 MCU features

Document Document name

System resources, CPU, and interrupts

AN234226 How to use interrupt in the XMC7000 family

AN234225 How to use DMA in the XMC7000 family

Peripherals

AN230938 How to use SCB in XMC7000 family

AN234380 How to use ethernet controller in XMC7000 family

AN234227 Using the SMIF in the XMC700 family

AN234197 How to use trigger multiplexer in XMC700 family

AN234002 How to use CAN FD in XMC7000 family

AN234119 Timer, Counter and PWM (TCPWM) usage in XMC7000 family

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
TBD
TBD
http://www.cypress.com/an225588
TBD
TBD
TBD
https://www.cypress.com/PSoC6LPAnalogAN
TBD
TBD
TBD
TBD
TBD

Application Note 36 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Glossary

Glossary

This section lists the most commonly used terms that you might encounter while working with XMC™ family of

devices.

• Board support package (BSP): A BSP is the layer of firmware containing board-specific drivers and other
functions. The board support package is a set of libraries that provide firmware APIs to initialize the board
and provide access to board level peripherals.

• Hardware Abstraction Layer (HAL): The HAL wraps the lower level drivers (like MTB-PDL-CAT1) and

provides a high-level interface to the MCU. The interface is abstracted to work on any MCU.

• KitProg: The KitProg is an onboard programmer/debugger with USB-I2C and USB-UART bridge
functionality. The KitProg is integrated onto most XMC™ development kits.

• MiniProg3/MiniProg4: Programming hardware for development that is used to program XMC™ devices on
your custom board or XMC™ development kits that do not support a built-in programmer.

• Personality: A personality expresses the configurability of a resource for a functionality. For example, the
SCB resource can be configured to be an UART, SPI or I2C personalities.

• Middleware: Middleware is a set of firmware modules that provide specific capabilities to an application.

Some middleware may provide network protocols (e.g. MQTT), and some may provide high level software
interfaces to device features (e.g. USB, audio).

• ModusToolbox™: An Eclipse-based embedded design platform for embedded systems designers that
provides a single, coherent, and familiar design experience combining the industry’s most deployed Wi-Fi
and Bluetooth® technologies, and the lowest power, most flexible MCUs with best-in-class sensing.

• Peripheral Driver Library: The peripheral driver library (PDL) simplifies software development for the

XMC7000 MCU architecture. The PDL reduces the need to understand register usage and bit structures, thus

easing software development for the extensive set of peripherals available.

https://github.com/infineon?q=TARGET+NOT+Deprecated
https://github.com/Infineon/mtb-hal-cat1
https://github.com/Infineon/mtb-pdl-cat1
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-002-psoc-miniprog3-program-and-debug-kit
http://www.cypress.com/cy8ckit-005
https://github.com/Infineon/modustoolbox-software#mcu-middleware-libraries
http://www.cypress.com/modustoolbox
http://www.cypress.com/documentation/software-and-drivers/peripheral-driver-library-pdl

Application Note 37 of 38 002-34334 Rev. *A

 2022-06-17

Getting started with XMC7000 MCU on ModusToolbox™ software

Revision history

Revision history

Document

version

Date of release Description of changes

** 2022-01-25 Initial release.

*A
2022-06-17 Updated Figure 3, Figure 4, Figure 8, Figure 9, Figure 10, Figure 11,

Figure 12, Figure 14, and Figure 15.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-06-17

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Go to: www.infineon.com/support

Document reference

002-34334 Rev. *A

IMPORTANT NOTICE
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

http://www.infineon.com/support
http://www.infineon.com/

