swissbit®

Product Data Sheet

Industrial M.2 PCle SSD

N2000 Series PCle 3.1, 3D TLC

Industrial Temperature Grade

Date: May 21, 2025 Revision: 1.06

Contents

1.	PRODUCT SUMMARY	. 3
2.	PRODUCT FEATURES	. 4
3.	SECURITY FEATURES	
4.	ORDERING INFORMATION	
5.	PRODUCT DESCRIPTION	
	5.1 PERFORMANCE SPECIFICATIONS	7
	5.2 CURRENT CONSUMPTION	7
	5.3 Environmental Specifications	
	5.4 REGULATORY COMPLIANCE	
	5.5 MECHANICAL SPECIFICATIONS	
	5.6 RELIABILITY AND ENDURANCE	
	5.7 Drive Geometry Specification	10
6.	ELECTRICAL INTERFACE	.1
7.	PACKAGE MECHANICAL	13
8.	NVME COMMANDS	15
9.	IDENTIFY DEVICE INFORMATION	16
10.	HEALTH MONITORING FUNCTIONALITY	18
11.	PART NUMBER DECODER	22
12.	MARKING SPECIFICATION	23
	12.1 TOP VIEW	
12	DEVISION LISTORY	21

N2000 Series - Industrial M.2 PCIe SSD 60 GBytes up to 480 GBytes

1. Product Summary

- Capacities: 60 GBytes, 120 GBytes, 240 GBytes, 480 GBytes
- Form Factor: PCI Express® M.2 (2230/2242/2280, S4) (30/42/80 mm x 22 mm x 2.63 mm)
- Compliance1: PCI Express (PCIe) Specification Revision 3.1
- Interface: Gen3 x 4 Lanes
 - Drive operates in x1 mode in x1 M.2 PCle slots
 - o Drive operates in x2 mode in x2 M.2 PCle slots
 - Drive operates in x4 mode in x4 M.2 PCle slots
- Command Sets: Supports NVMe 1.3
- Performance:
 - Read Performance: Sequential Read up to 1,753 MBytes/s, Random Read 4K up to 140,000 IOPS
 - Write Performance: Sequential Write up to 864 MBytes/s, Random Write 4K up to 134,000 IOPS
- Host Memory Buffer (HMB): Support for increased random performance
- Operating Temperature Range²:
 - o Industrial: -40 °C to 85 °C (Tambient)
 - o Industrial: -40 °C up to 95 °C (Tcase)³
- Storage Temperature Range: -40 °C to 85 °C
- Operating Voltage: 3.3 V supply voltage
- Low Power Consumption
- Power:
 - Power States PSo, PS1, PS2, PS3 and PS4
 - Thermal Throttling supported
- Data Retention*: 10 Years @ Life Begin; 1 Year @ Life End, @40 °C
- Endurance in TeraBytes Written (TBW) @ 480GB capacity:
 - o Client ≥ 964
- Shock/Vibration: 1,500 g l 50 g
- High-Performance Processor with Integrated, Parallel Flash Interface Engines:
 - Triple-Level Cell (TLC) 3D NAND Flash
 - LDPC Code ECC with up to 120 bit correction per 1 KByte page
- High Reliability:
 - Mean Time Between Failure (MTBF): > 2,000,000 hours
 - o Data Reliability: < 1 non-recoverable error per 10¹⁶ bits read

^{*} NAND Flash suppliers refer to JEDEC JESD47 and JESD22 for Data Retention testing. Based on the information provided by the NAND Flash suppliers, Data Retention is targeted as shown in the table for reference.

¹ To check the compatibility of the customer system and the storage device is part of the customer's responsibility. Swissbit can provide guidance and support on request.

² Adequate airflow is required to ensure the drive temperature, as reported in the S.M.A.R.T. data, does not exceed CCTEMP (Critical Composite Temperature Threshold) reported in the "Identify Controller Data Structure"

³ Tcase is the case surface temperature at the center of the top side of the device.

2. Product Features

- Dynamic and Static Wear Leveling
- Subpage Mode Flash Translation Layer (FTL)
- Data Care Management
 - o Active: Adaptive Read Refresh
 - Passive: Background Media Scan
- Lifetime Enhancements
 - Dynamic Bad Block Remapping
 - Write Amplification Reduction
- Power Fail Data Loss Protection
- Data set management support (TRIM)
- Active State Power Management (ASPM) Support
- In-Field Firmware Update5
- Enterprise-Grade Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T.)
- 30 µinch Gold-Plated Connector (IPC-6012B Class 2 Compliant)
- End-to-End (E2E) Data Protection
- Life Cycle Management
- Controlled "Locked" BOM
- RoHS / REACH Compliant
- Swissbit Device Manager (SBDM) Tool and SDK for SBDM (on request)

3. Security features

- AES256 encryption
- TCG OPAL 2.0
- Crypto erase

⁵ The support of In-Field FW update capabilities on host systems is recommended.

4. Ordering Information

Table 1: Standard Product List

Capacity	Part Number			
60 GBytes	SN2000Mx060GI-1TB1-1DB-STD			
120 GBytes	SN2000Mx120GI-1TB2-1DB-STD			
240 GBytes	SN2000Mx240GI-1TB4-1DB-STD			
480 GBytes	SN2000Mx480GI-1TB8-1DB-STD			

x = Form Factor

Table 2: Available Part Numbers

Capacity	Industrial Temperature						
	2230	2242	2280				
60 GBytes	SN2000MA060GI-1TB1-1DB-STD	SN2000MB060GI-1TB1-1DB-STD	SN2000MD060GI-1TB1-1DB-STD				
120 GBytes	SN2000MA120GI-1TB2-1DB-STD	SN2000MB120GI-1TB2-1DB-STD	SN2000MD120GI-1TB2-1DB-STD				
240 GBytes	SN2000MA240GI-1TB4-1DB-STD	SN2000MB240GI-1TB4-1DB-STD	SN2000MD240GI-1TB4-1DB-STD				
480 GBytes	SN2000MA480GI-1TB8-1DB-STD	SN2000MB480GI-1TB8-1DB-STD	SN2000MD480GI-1TB8-1DB-STD				

5. Product Description

The Swissbit® N2000 Solid State Drive (SSD) leverages the M.2 standard and NVMe standard to support a PCIe electrical interface as well as AES encryption, E2E data protection and TCG Opal standards. The NVMe controller and the newest 3D NAND flash technology provides robust, non-volatile storage solution for today's embedded computing applications. A functional block diagram of the N2000 SSD is provided below in Figure 1.

RAID PCIe PHY LDPC Engine CPU NAND DIE PCIe PCIe MAC 4 lanes Core Host Flash Controller NVMe core N2x00 Internal High Speed Bus Main AES DMA System Buffer

Figure 1: N2000 Functional Block Diagram

The N2000 SSD incorporates a 75-position edge connector with M key to support host read/write, control, and power activity per the applicable JEDEC specification.

The on-board NVMe controller manages the interface between the host and the non-volatile NAND flash memory array. The controller is designed to support PCle interface speeds and utilizes a dual processing core, providing an optimum balance between read/write performance, Data Care Management, and power fail protection.

Swissbit's N2000 SSDs deliver an impressive IOPS rate and highest endurance by combining 3D NAND flash technology with a high-end controller architecture, firmware, and an optimized configuration. The SSDs are designed for applications requiring high data transfer rates (see Table 3: Read/Write Performance). This performance is achieved through a 4-channel flash controller and 4-lane PCIe interface.

An on-controller LDPC Error Correction Code (ECC) engine provides the N2000 hardware ECC, which is capable of correcting up to 240 bits per 2 KByte page. This engine, combined with Swissbit's Data Care Management firmware, provides both passive and active data management strategies to ensure data integrity and extract the maximum possible endurance and reliability from the NAND flash array. These strategies include, but are not limited to, Global Wear Leveling, Adaptive Read Refresh, and Dynamic Block Remapping.

The risk of data loss as a result of an unexpected power fail event is mitigated using a robust sequence of voltage regulators, capacitors and detectors designed to ensure a graceful shutdown of the controller and NAND flash array. The combination of hardware and firmware power fail features prevents the possibility of resident data being corrupted during an unexpected power failure.

Related Documentation

- NVM Express Revision 1.4, (https://nvmexpress.org/)
- PCI Express M.2 standard PCI Express M.2 Specification, Revision 3.0, June 26, 2019 (https://pcisig.com)

5.1 Performance Specifications

The N2000 read/write sequential and random CDM performance benchmarks are detailed in Table 3.

Table 3: Read/Write Performance⁶

Capacity	Sequential Read (MBPS)		Sequential Write (MBPS)		Random Read 4k (IOPS)		Random Write 4k (IOPS)	
	HMB on	HMB off	HMB on	HMB off	HMB on	HMB off	HMB on	HMB off
60 GBytes	306	296	149	99	21,000	12,000	28,000	20,000
120 GBytes	644	632	396	265	50,000	24,000	70,000	47,000
240 GBytes	1,280	1,234	687	476	97,000	51,000	110,000	93,000
480 GBytes	1,753	1,636	864	770	140,000	84,000	134,000	129,000

5.2 Current Consumption

The drive-level current consumption as a function of operating mode is shown in Table 4.

Table 4: Current Consumption7

Capacity	Sequential Read	Sequential Write	Random Read 4k	Random Write 4k	Idle	PS3 ⁸	PS4 ⁸	Unit
60 GBytes	440	460	410	425		2.8	0.7	mA
120 GBytes	525	550	475	500	26			
240 GBytes	740	755	645	650	26			
480 GBytes	875	875	710	800				

Switzerland

⁶ The values are measured using Crystal Disk Mark 8 with a file size of 512MiB. Performance depends on flash type and number, file/cluster size, and burst speed.

⁷ All values are typical total values recorded at 25 °C and 3.3V power supply

⁸ Measured with ASPM L1.2 enabled

5.3 Environmental Specifications

5.3.1 Recommended Operating Conditions

The recommended operating conditions for the N2000 SSD are provided in Table 5.

Table 5: Recommended Operating Conditions9

Parameter	Value
Industrial Operating Temperature	-40 °C to 85 °C (Tambient)
Industrial Operating Temperature	-40 °C up to 95 °C (Tcase) ¹⁰
Power Supply V _{CC} Voltage	3.3 V ± 5%

5.3.2 Recommended Storage Conditions

The recommended storage conditions are listed in Table 6.

Table 6: Recommended Storage Conditions

Parameter	Value
Industrial Storage Temperature	-40 °C to 85 °C

5.3.3 Shock, Vibration and Humidity

The maximum shock, vibration and humidity conditions are listed in Table 7.

Table 7: Shock, Vibration and Humidity

able it bridge transaction and training					
Parameter	Value				
Non-Operating Shock	1,500 g, 0.5 ms pulse duration, half-sine wave (IEC 60068-2-27 and JESD22-B110 cond. B)				
Non-Operating Vibration	50 <i>g</i> , 80-2,000 Hz, 3 axes, 12 cycles (IEC 60068-2-6, MIL-STD-883 H Method 2007.3)				
Humidity (Non-Condensing)	85% RH 85 °C, 1000 hrs, max. supply voltage (JESD22-A101B)				

⁹ Adequate airflow is required to ensure the temperature, as reported in the S.M.A.R.T. data, does not exceed 110 °C (industrial temperature drive).

¹⁰ Tcase is the case surface temperature at the center of the top side of the device.

5.4 Regulatory Compliance

The N2000 devices comply with the regulations / standards listed in Table 8.

Table 8: Regulatory Compliance

Abbreviation	Regulation/ Standard
ЕМС	CE - 2014/30/EU FCC - 47 CFR Part 15 UKCA - S.I. 2016 No. 1091 and S.I. 2012 No. 3032
RoHS	2011/65/EU with 2015/863/EU and 2017/2102/EU
REACh	1907/2006/EU and 207/2011/EU
WEEE	2012/19/EU

5.5 Mechanical Specifications

Physical dimensions are detailed in Table 9. The page 13 and 14 illustrate the N2000 dimensions.

Table 9: Physical Dimensions

Physical Dimensions				
Length	30.00/42.00/80.00±0.15			
Width	22.00±0.15	mm		
Thickness (nominal)	Max. 2.63			
Weight (Max Capacity)	≤5.50	g		

5.6 Reliability and Endurance

The Mean Time Between Failure (MTBF) is specified to exceed the value listed in Table 10. Data reliability with effective error tolerance and data retention at the beginning and end of life is also provided.

Table 10: Reliability

Parameter	Value			
MTBF (at 25 °C)	> 2,000,000 hours			
Data Reliability	< 1 Non-Recoverable Error per 10 ¹⁶ Bits Read			
Data Retention	10 Years at Start (JESD47), 1 Year at EOL			

Endurance represented as both TeraBytes Written (TBW) and full Drive Writes Per Day (DWPD) for different application scenarios is provided in Table 11.

Table 11: Endurance^{11, 12}

Capacity	Sequential		Clic	ent	Enterprise		
	TBW	DWPD ¹³	TBW	DWPD ¹³	TBW	DWPD ¹³	
60 GBytes	180	2.68	141	2.14	22	0.33	
120 GBytes	360	2.74	268	2.03	48	0.36	
240 GBytes	720	2.74	471	1.79	91	0.34	
480 GBytes	1,440	2.74	964	1.83	151	0.28	

5.7 Drive Geometry Specification

The N2000 drive geometry is set to report industry standard LBA settings per the IDEMA standard (LBA1-03). The values for each capacity are shown in Table 12.

Table 12: Drive Geometry

	bic iz. brive dedineary					
Davis Camaaits	11	Total LBA	User Addressable Bytes			
Raw Capacity	User Capacity ¹⁴	Decimal	(Unformatted)			
64 GBytes	60 GBytes	117,231,408	60,022,480,896			
128 GBytes	120 GBytes	234,441,648	120,034,123,776			
256 GBytes	240 GBytes	468,862,128	240,057,409,536			
512 GBytes	480 GBytes	937,703,088	480,103,981,056			

Page 10 of 24

¹¹ Client and Enterprise workloads follow the JEDEC JESD219 standard. Enterprise workload values are measured based on 240 hours of runtime. 1 TByte = 10¹² bytes

¹² According to JEDEC (JESD471), the time to write the full TBW is a minimum of 18 months. Higher average daily data volume reduces the specified TBW. The values listed are estimates and are subject to change without notice.

¹³ DWPD values are based on a service life of 3 years

¹⁴ 1 GByte = 10⁹ bytes

6. Electrical Interface

This 75-position m.2 connector (Figure 2) incorporates M key for Socket 3 PCIe-based SSDs and follows the applicable PCIe m.2 specification. The signal/pin assignments and descriptions are listed in the following Table 13.

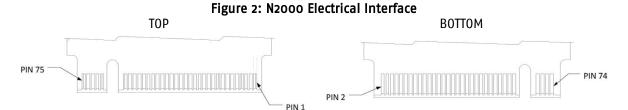


Table 13: Pin Assignment, Name and Description

Description	Assignment	Pin	Pin	Assignment	Description
Config_3	GND	1	2	+3.3V	3.3V Source
Ground	GND	3	4	+3.3V	3.3V Source
PCIe TX Differential Signal	PETn3*	5	6	NC	No Connect
PCIe TX Differential Signal	PETp3*	7	8	NC	No Connect
Ground	GND	9	10	DAS/DSS	DEVACT Device Activity Signal
PCIe RX Differential Signal	PERn3*	11	12	+3.3V	3.3V Source
PCIe RX Differential Signal	PERp3*	13	14	+3.3V	3.3V Source
Ground	GND	15	16	+3.3V	3.3V Source
PCIe TX Differential Signal	PETn2*	17	18	+3.3V	3.3V Source
PCIe TX Differential Signal	PETp2*	19	20	NC	No Connect
Config_o	GND	21	22	NC	No Connect
PCIe RX Differential Signal	PERn2*	23	24	NC	No Connect
PCIe RX Differential Signal	PERp2*	25	26	NC	No Connect
Ground	GND	27	28	NC	No Connect
PCIe TX Differential Signal	PETn1*	29	30	NC	No Connect
PCIe TX Differential Signal	PETp1*	31	32	NC	No Connect
Ground	GND	33	34	NC	No Connect
PCIe RX Differential Signal	PERn1*	35	36	NC	No Connect
PCIe RX Differential Signal	PERp1*	37	38	NC	No Connect
Ground	GND	39	40	NC	SMBus Clock (on request)
PCIe TX Differential Signal	PETno*	41	42	NC	SMBus Data (on request)
PCIe TX Differential Signal	PETpo*	43	44	NC	SMBus Alert Notification (on request)
Ground	GND	45	46	NC	No Connect
PCIe RX Differential Signal	PERno*	47	48	NC	No Connect
PCIe RX Differential Signal	PERpo*	49	50	PERST#	PE-Reset (Functional Reset)
Ground	GND	51	52	CLKREQ#	Clock Request Signal; L1 PM
PCIe Reference Clock Signal	REFCLKn	53	54	NC	PCIe PME Wake
PCIe Reference Clock Signal	REFCLKp	55	56	NC	MFG Data

Ground GND		57	58	NC	MFG Clock
Mechanical Notch M	-	- 59-65		Mechanical Notch M	
No Connect	NC	67	60-66	-	Mechanical Noteri M
Config_1	NC	69	68	NC	32.768 kHz Clock Supply
Ground	GND	71	70	3.3V	Supply Pin, 3.3V
Ground	GND	73	72	3.3V	Supply Pin, 3.3V
Config_2	GND	75	74	3.3V	Supply Pin, 3.3V

^{*}TX (transmit) and RX (receive) pins are labeled from the SSD view and must be connected with the reversed RX and TX signals of the host (i.e., TX to RX and RX to TX).

7. Package Mechanical

Figure 3: N2000 2230 dimensions in mm

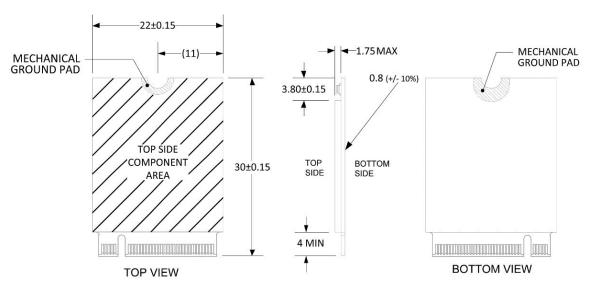


Figure 4: N2000 2242 dimensions in mm

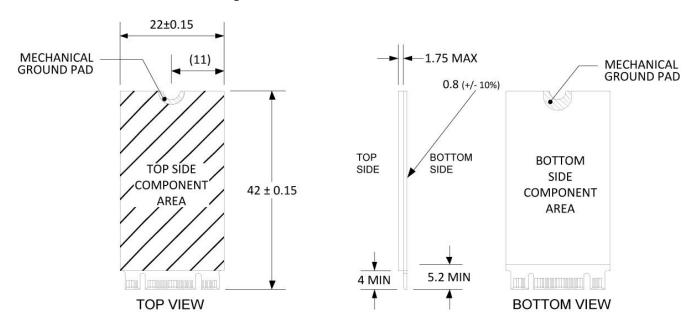


Figure 5: N2000 2280 dimensions in mm

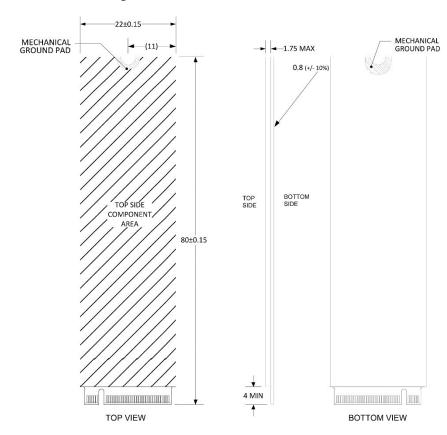
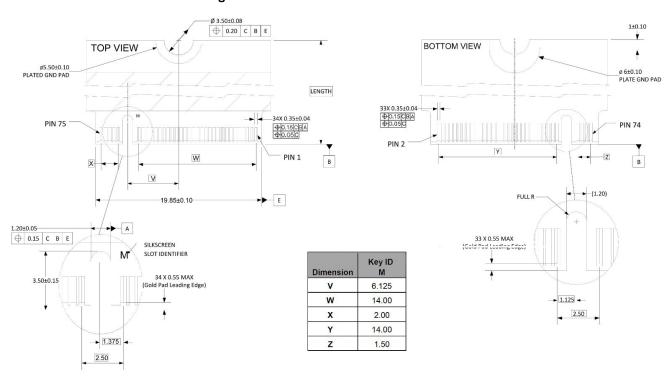



Figure 6: M.2 Connector Dimensions in mm

8. NVMe Commands

This section provides information on the NVMe commands supported by the SSD. The commands are issued by loading the DWords in the command block with the supplied parameter, and then writing the command code to the register. See the following Table 14 for a list of NVMe commands the device supports. For details about setting up the command registers, see the latest NVMe Specification.

Table 14: NVMe Command Set

Command	Code	Command	Code		
Admin Commands					
Delete I/O Submission Queue	ooh	Create I/O Submission Queue	o1h		
Get Log Page	02h	Delete I/O Completion Queue	04h		
Create I/O Completion Queue	o5h	Identify	o6h		
Abort	o8h	Set Features	09h		
Get Features	oAh	Asynchronous Event Request	oCh		
Firmware Commit	10h	Firmware Image Download	11h		
Device Self-test	14h	Format NVM	8oh		
Sanitize	84h				
NVM Command Set	·		·		
Flush	ooh	Write	o1h		
Read	02h	Write Uncorrectable	04h		
Compare	o5h	Write Zeroes	o8h		
Dataset Management	09h				

9. Identify Device Information

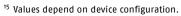

The following table describes the 4096 bytes of data the drive returns for the Identify command (06h).

Table 15: Identify Namespace Data Structure (CNS ooh)

Byte(s)	Default Value	Data Field Type Information
0-7	XXXXh ¹⁵	Namespace Size (NSZE)
8-15	XXXXh ¹⁵	Namespace Capacity (NCAP)
16-23	XXXXh ¹⁵	Namespace Utilization (NUSE)
24	ooh	Namespace Features (NSFEAT)
25	ooh	Number of LBA Formats (NLBAF)
26	ooh	Formatted LBA Size (FLBAS)
27	ooh	Metadata Capabilities (MC)
28	ooh	End-to -end Data Protection Capabilities (DPC
29	ooh	End-to -end Data Protection Type Settings (DPS)
30	ooh	Namespace Multi-path I/O and Namespace Sharing Capabilities (NMIC)
31	ooh	Reservation Capabilities (RESCAP)
32	ooh	Format Progress Indicator (FPI)
33	01h	Deallocate Logical Block Features (DLFEAT)
34-35	ooooh	Namespace Atomic Write Unit Normal (NAWUN)
36-37	ooooh	Namespace Atomic Write Unit Power Fail (NAWUPF)
38-39	ooooh	Namespace Atomic Compare & Write Unit (NACWU)
40-41	ooooh	Namespace Atomic Boundary Size Normal (NABSN)
42-43	ooooh	Namespace Atomic Boundary Offset (NABO)
44-45	ooooh	Namespace Atomic Boundary Size Power Fail (NABSPF)
46-47	ooooh	Namespace Optimal IO Boundary (NOIOB)
48-63	All ooh	NVM Capacity (NVMCAP)
64-103	All ooh	Reserved
104-119	All ooh	Namespace Globally Unique Identifier (NGUID)
120-127	All ooh	IEEE Extended Unique Identifier (EUI64)
128-131	00090000h	LBA Format o Support (LBAFo)
132-191	All ooh	LBA Format 1 to 15 Support (LBAF1 – LBAF15)
192-383	All ooh	Reserved
384-4095	All ooh	Vendor Specific (VS)

Table 16: Identify Controller Data Structure (CNS 01h)

Byte(s)	Default Value	Data Field Type Information
0-1	1DD4h	PCI Vendor ID (VID)
2-3	1DD4h	PCI Subsystem Vendor ID (SSVID)
4-23	XXXXh ¹⁵	Serial Number (SN)
24-63	XXXXh ¹⁵	Model Number (MN)
64-71	XXXXh ¹⁵	Firmware Version (FR)
72	o6h	Recommended Arbitration Burst (RAB)
73-75	8C6o78h	IEEE OUI Identifier (IEEE)

D (()	Default	
Byte(s)	Value	Data Field Type Information
76	ooh	Controller Multi-Path I/O and Namespace Sharing Capabilities (CMIC)
77	o6h	Maximum Data Transfer Size (MDTS)
78-79	0001h	Controller ID (CNTLID)
80-83	00010300h	Version (VER)
84-87	000249F0h	Runtime D3 Resume Latency (RTD3R)
88-91	XXXXXXXXh15	Runtime D3 Entry Latency (RTD3E)
92-95	00000200h	Optional Asynchronous Events Supported (OAES)
96-99	oooooooh	Controller Attributes (CTRATT)
100-111	All ooh	Reserved
112-127	All ooh	FRU Globally Unique Identifier (FGUID)
128-255	All ooh	Reserved
256-257	0016h	Optional Admin Command Support (OACS)
258	o4h	Abort Command Limit (ACL)
259	o7h	Asynchronous Event Request Limit (AERL)
260	12h	Firmware Updates (FRMW)
261	oEh	Log Page Attributes (LPA)
262	3Fh	Error Log Page Entries (ELPE)
263	04h	Number of Power States Supported (NPSS)
264	01h	Admin Vendor-Specific Command Configuration (AVSCC)
265	01h	Autonomous Power State Transition Attributes (APSTA)
266-267	0170h	Warning Composite Temperature Threshold in Degrees Kelvin (WCTEMP)
268-269	017Fh	Critical Composite Temperature Threshold in Degrees Kelvin (CCTEMP)
270-271	0064h	Maximum Time for Firmware Activation (MTFA)
272-275	00004000h	Host Memory Buffer Preferred Size (HMPRE)
276-279	00004000h	Host Memory Buffer Minimum Size (HMMIN)
280-295	All ooh	Total NVM Capacity (TNVMCAP)
296-311	All ooh	Unallocated NVM Capacity (UNVMCAP)
312-315	oooooooh	Replay Protected Memory Block Support (RPMBS)
316-317	oooAh	Extended Device Self-test Time (EDSTT)
318	01h	Device Self-test Options (DSTO)
319	o4h	Firmware Update Granularity (FWUG)
320-321	ooooh	Keep Alive Support (KAS)
322-323	0001h	Host Controlled Thermal Management Attributes (HCTMA)
324-325	0157h	Minimum Thermal Management Temperature (MNTMT)
326-327	017Fh	Maximum Thermal Management Temperature (MXTMT)
328-331	00000003h	Sanitize Capabilities (SANICAP)
332-511	All ooh	Reserved
512	66h	Submission Queue Entry Size (SQES)
513	44h	Completion Queue Entry Size (CQES)
514-515	ooooh	Maximum Outstanding Commands (MAXCMD)
516-519	000000001h	Number of Namespaces (NN)
520-521	001Fh	Optional NVM Command Support (ONCS)
522-523	ooooh	Fused Operation Support (FUSES)
-		1 22

Byte(s)	Default Value	Data Field Type Information
524	o3h	Format NVM Attributes (FNA)
525	o1h	Volatile Write Cache (VWC)
526-527	ooooh	Atomic Write Unit Normal (AWUN)
528-529	ooooh	Atomic Write Unit Power Fail (AWUPF)
530	ooh	NVM Vendor-Specific Command Configuration (NVSCC)
531	ooh	Reserved
532-533	ooooh	Atomic Compare and Write Unit (ACWU)
534-535	ooooh	Reserved
536-539	oooooooh	Scatter Gather List Support (SGLC)
540-767	All ooh	Reserved
768-1023	All ooh	NVM Subsystem NVMe Qualified Name (SUBNQN)
1024-2047	All ooh	Reserved
2048-2079	XXXXh	Power State o Descriptor
2080-2111	XXXXh	Power State 1 Descriptor
2112-2143	XXXXh	Power State 2 Descriptor
2144-2175	XXXXh	Power State 3 Descriptor
2176-2207	XXXXh	Power State 4 Descriptor
2208-3071	All ooh	Power State 5 – 31 Descriptor (Not Applicable)
3072-4095	All ooh	Vendor Specific (VS)

10. Health Monitoring Functionality

The N2000 SSDs support Self-Monitoring, Analysis, and Reporting Technology (SMART) attributes. The SSD supports log information as defined in the NVMe specification. Supported information is shown in the log pages defined in Table 17:

Table 17: Supported Log Pages

Log Page	Log Identifier
Error Information	o1h
SMART/Health Information	o2h
Firmware Slot Information	o3h
Commands Supported and Effects	05h
Device Self-Test Log	o6h
Telemetry Host-Initiated	o7h
Telemetry Controller-Initiated	o8h

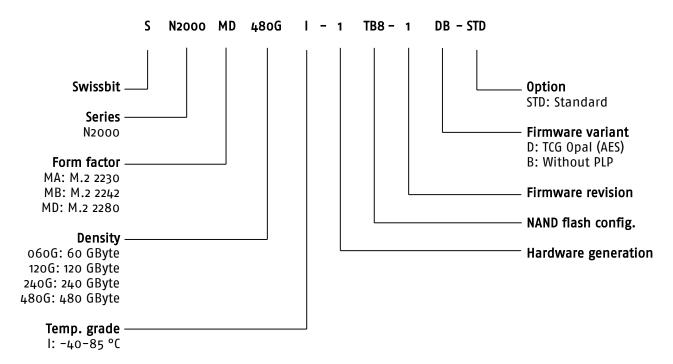
See the following table for the 512-byte data structure of the SMART/Health Information log page:

Table 18: SMART/Health Information (Log Identifier 02h)

	able 18: SMART/Health Information (Log Identifier 02h)				
Byte(s)	Description				
0	Critical warning: for the state of the controller				
1-2	Composite Temperature: in degrees Kelvin				
3	Available Spare: as a percentage of remaining spare capacity				
4	Available Spare Threshold				
5	Percentage Used: Estimate of the percentage of the NVM subsystem life left based on usage				
6-31	Reserved				
32-47	Data Units Read: Number of 512-byte sectors read by the host (in 1000 increments)				
48-63	Data Units Written: Number of 512-byte sectors written by the host (in 1000 increments)				
64-79	Host Read Commands: Number of Read commands completed by the controller				
80-95	Host Write Commands: Number of Write commands completed by the controller				
96-111	Controller Busy Time: Amount of time, in minutes, the controller was busy with I/O commands				
112-127	Power Cycles: Number of power cycles that has occurred over the life of the drive				
128-143	Power On Hours: Number of hours the device has been powered over the life of the drive (does not include the time the device is in low power state conditions)				
144-159	Unsafe Shutdowns: Number of shutdowns that occurred without a shutdown notification				
160-175	Media and Data Integrity Errors: Number of unrecoverable errors, including UECC, CRC checksum failures, and LBA mismatches, that occurred over the life of the drive				
176-191	Number of Error Information Log Entries: Number of entries recorded in the Error Information log over the life of the drive				
192-195	Warning Composite Temperature Time: Amount of time, in minutes, the controller was operational and the Composite Temperature was equal to or greater than the Warning Composite Temperature Threshold (WCTEMP) but less than the Critical Composite Temperature Threshold (CCTEMP)				
196-199	Critical Composite Temperature Time: Amount of time, in minutes, the controller was operational and the Composite Temperature was equal to or greater than the Critical Composite Temperature Threshold (CCTEMP)				
200-201	Temperature Sensor 1: Current temperature, in degrees Kelvin, reported by temperature sensor 1				
202-203	Temperature Sensor 2: Current temperature, in degrees Kelvin, reported by temperature sensor 2				
204-215	Not used				
216-219	Thermal Management Temperature 1 Transition Count: number of times the controller transitioned to lower power active power states or performed vendor specific thermal management actions while minimizing the impact on performance				
220-223	Thermal Management Temperature 2 Transition Count: number of times the controller transitioned to lower power active power states or performed vendor specific thermal management actions regardless of the impact on performance				
224-227	Total Time For Thermal Management Temperature 1: number of seconds that the controller had transitioned to lower power active power states or performed vendor specific thermal management actions while minimizing the impact on performance				
228-231	Total Time For Thermal Management Temperature 2: number of seconds that the controller had transitioned to lower power active power states or performed vendor specific thermal management actions regardless of the impact on performance				
232-511	Reserved				

The following data structure is applied to both Telemetry Host-Initiated log and Telemetry Controller-Initiated log:

Table 19: Telemetry Log (Log Identifier 07h & 08h)


Byte(s)	Description			
Telemetry Header				
0	Log Identifier: This field shall be 07h or 08h			
1-4	Reserved			
5-7	IEEE OUI Identifier (IEEE):			
4	Telemetry Host-Initiated Data Area 1 Last Block: This field shall be ooo1h			
10-381	Reserved			
382	Telemetry Controller-Initiated Data Available			
383	Telemetry Controller-Initiated Data Generation Number			
384-511	Reserved			
Telemetry Data	Block 1			
528-529	Minimum Temperature, in degrees Kelvin			
530-531	Current Temperature, in degrees Kelvin			
530-531	Maximum Temperature, in degrees Kelvin			
560-561	Number of valid spare blocks			
562-563	Number of initial spare blocks			
564-565	Run Time Bad Block Count			
596-599	SLC Maximum Erase Count			
604-607	SLC Average Erase Count			
612-615	TLC Maximum Erase Count			
620-623	TLC Average Erase Count			
640	SLC Remaining Life Percentage Based On P/E			
646	TLC Remaining Life Percentage Based On P/E			

772-776	NVMe/PCIe Reset Count
804-807	PCIe Gen1 Link Count
808-811	PCIe Genz Link Count
812-815	PCIe Gen3 Link Count
816-823	PCIe ECRC Event Count
824-831	PCIe LCRC Event Count
873	PCIe Power On Link Speed
876	PCIe Current Link Speed
877	PCIe Current Link Width
878	PCIe ASPM Enabled
879	PCIe L1 Sub State Enabled
880-887	PS3 Resume Count
888-895	PS4 Resume Count
932-935	PCIe x1 Link Count
936-939	PCle x2 Link Count
940-943	PCle x3 Link Count
944-951	PCIe L1 Event Count

11. Part Number Decoder

12. Marking Specification

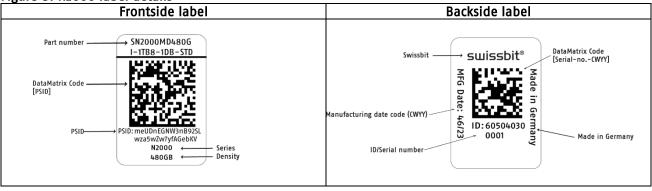

12.1 Top View

Figure 7: N2000 top view

12.2 Print on the label

Figure 8: N2000 label details

13. Revision History

Table 20: Document Revision History

Date	Revision	Description	Revision Details
October 25, 2023	0.90	Preliminary release	Doc. req. no. 6649
December 5, 2023	1.00	Initial release	Doc. req. no. 6745
April 2, 2024	1.01	Security features have been updated	Doc. req. no. 6994
May 29, 2024	1.02	Security features have been updated	Doc. req. no. 7130
August 7, 2024	1.03	Sanitize Capabilities (SANICAP) has been updated	P000000423
March 4, 2025	1.04	Updated mechanical drawing	-
May 09, 2025	1.05	Updated Industrial Operating Temperature	-
May 21, 2025	1.06	Updated operating voltage	-

Disclaimer

No part of this document may be copied or reproduced in any form or by any means, or transferred to any third party, without the prior written consent of an authorized representative of Swissbit AG ("SWISSBIT"). The information in this document is subject to change without notice. SWISSBIT assumes no responsibility for any errors or omissions that may appear in this document and disclaims responsibility for any consequences resulting from the use of the information set forth herein. SWISSBIT makes no commitments to update or to keep current information contained in this document. The products listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. Moreover, SWISSBIT does not recommend or approve the use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If a customer wishes to use SWISSBIT products in applications not intended by SWISSBIT, said customer must contact an authorized SWISSBIT representative to determine SWISSBIT willingness to support a given application. The information set forth in this document does not convey any license under the copyrights, patent rights, trademarks or other intellectual property rights claimed and owned by SWISSBIT. The information set forth in this document is considered to be "Proprietary" and "Confidential" property owned by SWISSBIT.

ALL PRODUCTS SOLD BY SWISSBIT ARE COVERED BY THE PROVISIONS APPEARING IN SWISSBIT'S TERMS AND CONDITIONS OF SALE ONLY, INCLUDING THE LIMITATIONS OF LIABILITY, WARRANTY AND INFRINGEMENT PROVISIONS. SWISSBIT MAKES NO WARRANTIES OF ANY KIND, EXPRESS, STATUTORY, IMPLIED OR OTHERWISE, REGARDING INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED PRODUCTS FROM INTELLECTUAL PROPERTY INFRINGEMENT AND EXPRESSLY DISCLAIMS ANY SUCH WARRANTIES INCLUDING WITHOUT LIMITATION ANY EXPRESS, STATUTORY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

© 2025 SWISSBIT AG All rights reserved.

Switzerland