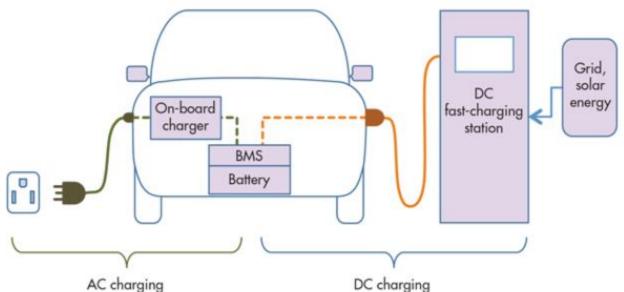
KOA Europe GmbH

26-04-2022

This presentation is confidental. Do not share with a third party company.



Introduction

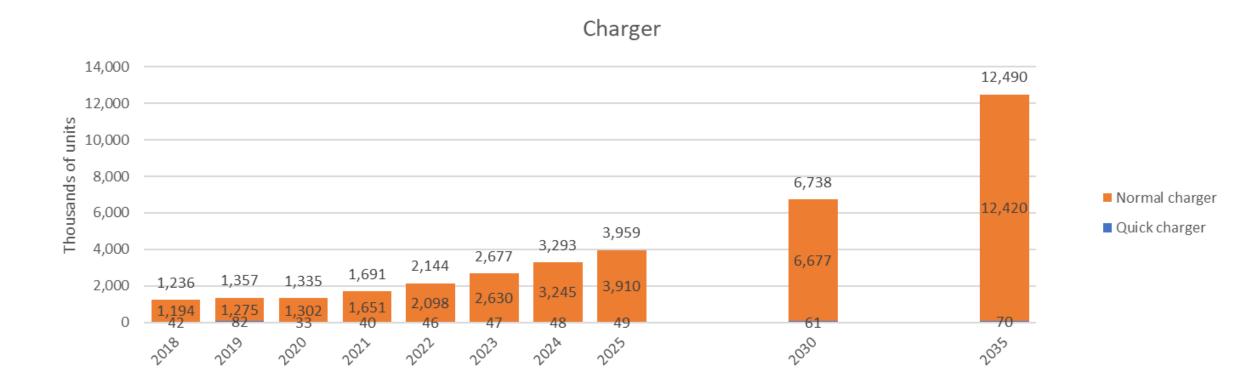
Current Measurement Resistors High Precision Resistors

EV-Chargers

AC or DC

- Every vehicle has an on-board charger.
- Limited power, slow charging.

- Infrastructure investment is shared among hundreds of users.
- Large power rating, fast charging.
- Capable of integration with renewable resources.


Charge Method	AC up to	DC up to
Level 1	1.9 kW (120 V @ 16 A)	36 kW (200-450 V @ 80 A)
Level 2	19.2 kW (240 V @ 80 A)	90 kW (200-450 V @ 200 A)
Level 3	> 20 kW (TBD)	240 kW (200-600 V @ 400 A) not finalised

KOA

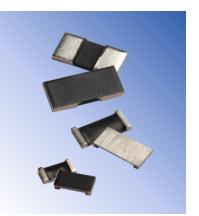
EV-Chargers

Charger Development

Source : FUJI KEIZAI CO., LTD.

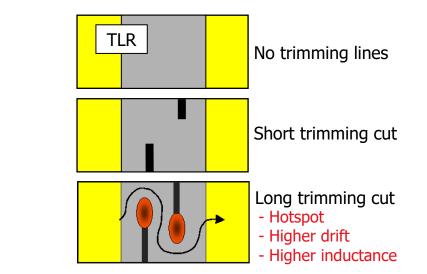
EV-Chargers

Charging Station Circuit

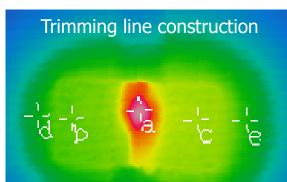

Introduction

Current Measurement Resistors

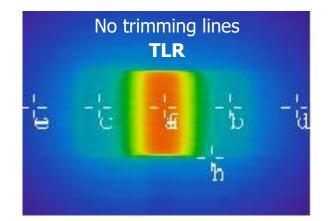
High Precision Resistors

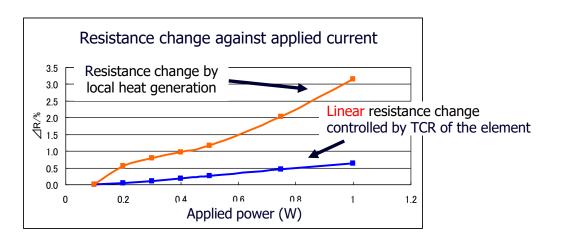

EV-Chargers: Current Sensing

TLR – Series Advantages of Special Trimming

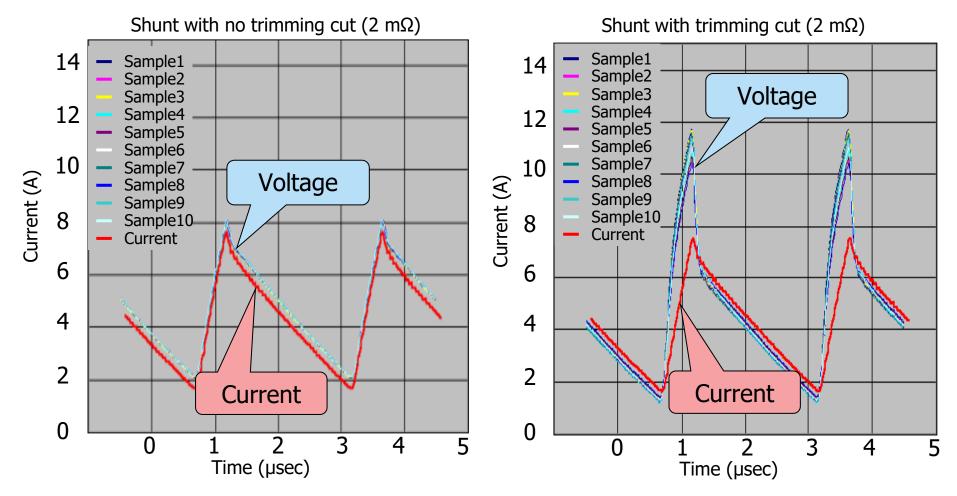


Special trimming of shunts


- Extremely low resistance values 0.2 m $\Omega \sim 20 \text{ m}\Omega$
- Tolerance ± 1 % is standard
- Special trimming for uniform temperature distribution and enhanced reliability
- Ultra low inductance suitable for high frequencies
- Excellent heat radiation due to wide electrode


Automotive

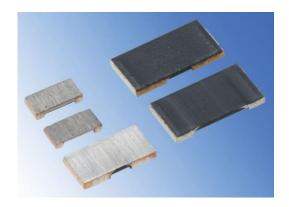
Hot spot is created in the middle, close to the trimming cut.


Hot spot is created symmetrically to the central axis. => Better heat distribution for resistance stability.

EV-Chargers: Current Sensing

Advantage of Non-Trimming Structure

Parasitic inductance has an influence on the current detection accuracy



High frequency and large slope (rising fast) are affected by inductance.

KON

EV-Chargers: Current Sensing

TLR – Series Metal Plate Chip Type Resistor – High Power

Features

- High power in small package
- Low resistances available: 0.5 mΩ ~ 20 mΩ
- Ultra low profile: 0.6 mm ~ 0.7 mm height
- No laser trimming cut excellent pulse resistance low inductance
- Metal alloy: superior corrosion and heat resistance
- Soldering area is mainly the bottom electrode
- AEC-Q200 tested

Automotive

Applications

Automotive electronics, power steering (EPS), motor control units, power supplies, AC / DC-DC converter, metering, CPU current sensing, mobile devices charge controller, etc.

Ratings

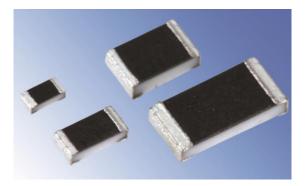
Туре	Inch Size	Power Rating	Rated Terminal Part Temperature	T.C.R. (ppm/K)	Resistance Range F: ±1%
TLR2A	0805	1 W	+105 °C	±100	$2 \text{ m}\Omega \sim 10 \text{ m}\Omega$
TLR2BP	1206	1.5 ~ 3 W	+100 °C / +110 °C		$0.5 \text{ m}\Omega \sim 20 \text{ m}\Omega$
TLR3AP	2512	3 ~ 5 W	+90 °C / +110 °C	±50 /±75	$0.5~\text{m}\Omega\sim 10~\text{m}\Omega$

TLRH: Higher resistance range of TLR

- 10mΩ ... 270mΩ, 0.25W ~ 5W, 0805 and 2512
- **TLRZ:** Metal plate chip jumper
- 10A ... 50A, 0402/0603/0805/1206

Operating Temp. Range: -65 ~ +155 °C (2A size) -65 ~ +170 °C (2B, 3A)

Introduction


Current Measurement Resistors 2

High Precision Resistors

Copyright © KOA Europe GmbH. All rights reserved.

EV-Chargers: High Precision Resistors

RS73 – Ultra Precision & High Reliability Resistors

Features

- Ultra precise initial resistance tolerances
- Low T.C.R.: ±25 ppm/K
- Precise long-term stability (±0.2 %~)
- ESD stability of thick film resistors
- Ideal for applications where thin film is not suitable
- Can replace MINI-MELF resistors in several applications
- AEC-Q200 tested

Applications

- High precision circuits for automotive and industrial
- A/D signal conversion
- High precision sensing
- Voltage detector

<u>Ratings</u>

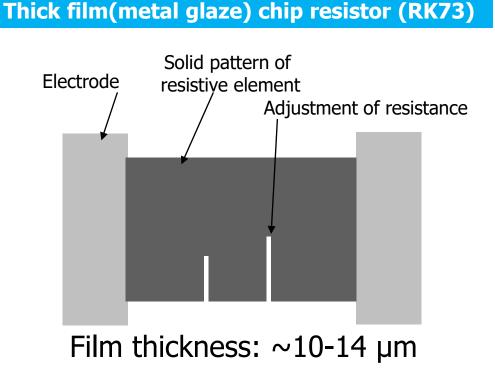
Anti-Sulfuration types are also available: RS73F_RT RS73G RT

Operating Temperature Range: -55 ~ +155 °C

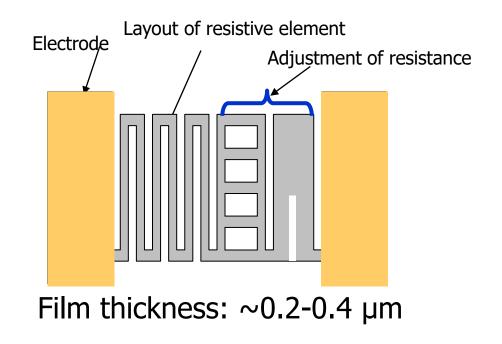
 $\langle \langle O \rangle$

Automotive

– Size		Power Rated Ambie	Rated Ambient	Rated Terminal	T.C.R.	Resis	Long-Term																				
	(inch)			Part Temperature		B: ±0.1%	C: ±0.25%	D: ±0.5% F: ±1%	Stability ∆R																		
RS73 (F/G) 1E	EW 0402	0.125 W	+85 °C			300 Ω ~ 100 kΩ	300 Ω ~ 1 MΩ																				
RS73 (F/G) 1J	0603	0.2 W			+125 °C F: ±25 G: ±50	1125.00	125.00	125.00	125.00	125.00	125.00	125.00		125.00	125.00		1125.00	125.00	1125.00		1125.00	L125.0C F: ±2	F: ±25		$10~\Omega \sim 1~M\Omega$		±0.2 % ~
RS73 (F/G) 2A	0805	0.25 W				G: ±50	10 Ω ~ 3 MΩ	10 Ω ~ 6.8 MΩ	10 Ω ~ 10 MΩ	±0.4 %																	
RS73 (F/G) 2B	1206	0.33 W				10 Ω <i>י</i>	~ 1 MΩ	10 32 ~ 10 M32																			


* Values from E192 series on request

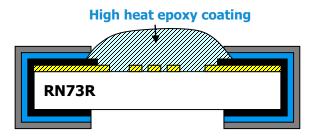
EV-Chargers: Thick Film vs. Thin Film



What is the Structural Difference?

- The resistive element of a metal glaze resistor is formed by screen printing and the resistance value is finally adjusted by trimming.
- The resistive element of the metal film resistors is deposited by sputtering, the pattern is formed by photolithography technology and resistance value is finally adjusted by trimming.

Thin Film(metal film) chip resistor (RN73R)


EV-Chargers: Thick Film vs. Thin Film

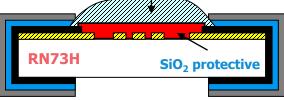
RN73R & RN73H: Precision Metal Thin Film

RN73R

Features

- Improved resistance to electric corrosion and stability compared to RN73
- Excellent heat resistance
 - ✓ Operating temperature range: -55 °C \sim +155 °C
 - \checkmark High power rating at rated ambient temperature +85 °C
- Improved moisture resistance of 0.25 % (+85 °C ambient, 85 %, 1000 hrs)
- AEC-Q200 tested, Sulfur resistance verified according to ASTM B 809-95

Automotive


RN73H

Features

- Recommended for automotive applications
- Excellent moisture resistance and high heat resistance by special resistive film and protective coating
- Additional inorganic passivation
- Improved moisture resistance of 0.1 % (+85 °C ambient, 85 %, 1000 hrs)
- Load live also specified and tested at +85 °C ambient, 3000 hrs
- AEC-Q200 tested, Sulfur resistance verified according to ASTM B 809-95
- => Recommendation is RN73H for highest reliability

High heat epoxy coating

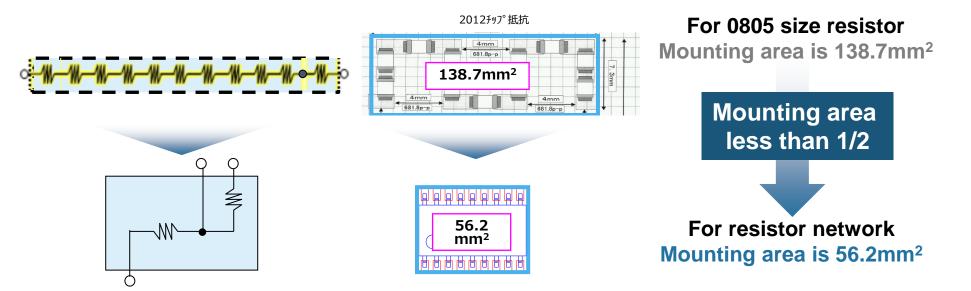
EV-Chargers: Thick Film vs. Thin Film

Comparison of High Precision Resistors (0603 inch)

	Thic	k Film	Thin Film		Advantage
	RK73G High precision	RS73F Ultra high prec. & High reliability	RN73R/H Thin Film, High Heat Resistance		Disadvantage
Resistance tolerance (%)	0.25 ~	0.1 ~	0.05 ~		
T.C.R. (ppm/K)	50 ~	25 ~	5 ~	Thin Film advantage	
Long-term stability (%)	2	0.2	0.1		
Current noise (µV/V)	3.3	2.1	0.1	Thin Film advantage	
Solder heat resistance (%)	1	0.2	0.05		
ESD resistance	High	High	Low	Thick Film	
Power rating (W)	0.1	0.2	0.1	advantage	

> Thin film resistors are superior in high accuracy (Tolerance, TCR, long-term stability, noise).

> Thick film resistors are superior in terms of performance of ESD resistance and power rating.


Page 14

EV-Chargers: Voltage Divider

HVD : High Voltage Divider Thin Film Resistor Network

1. Save the mounting area

Example: 11 discrete thin film resistors in series of size 0805

2. Guarantee of relative precision

Thin Film Si-chips ensure good relative resistance tolerance and relative T.C.R.

3. The mounting cost can be decreased.

Reduced number of chips are mounted

Confidential

EV-Chargers: Voltage Divider

HVD : High Voltage Divider Thin Film Resistor Network

8-PIN

3,

Features

- High precision high voltage divider
- High precision ratio matching (resistance tolerance and T.C.R.)
- Available custom combination of R1 & R2

Dimensions

5,5		Dimensio	ons (r	nm)	
	А	8.66 ± 0.2	D	1.50 ± 0.1	<
	В	5.99 ± 0.2	Е	0.25 ± 0.1	
] [] 3,4	С	1.60 ± 0.2	F	3.81 ± 0.2	D

Ratings

1.2

Pin No.

8.7

	Maximum Working Voltage	Power Rating per Element	Rated Ambient Temperature	Operating Temperature Range	Resistance Range		Absolute Resistance Tolerance	Relative Resistance Tolerance	T.C.R.	Relative T.C.R. Tracking**
High R (R1)	1000 V	250 mW	+85 °C	-55 °C+155 °C	0.5 MΩ ~ 51 MΩ	Voltage ratio 1:10 ~	±0.1 % ±0.25 % ±0.5 % ±1 %	0.1 % 0.25 %	±25 ppm/K ±50 ppm/K	10 ppm/K 25 ppm/K
Low R (R2)	15 V	50 mW			1.5 kΩ** ~ 1 MΩ	1:1000	-		PP, K	

** Relative T.C.R. tracking in R-range $1.5k\Omega \leq R2 < 4.5k\Omega$ is 25ppm

Specifications given herein may be changed at any time without prior notice.

EV-Chargers: Voltage Divider

HVD : High Voltage Divider Thin Film Resistor Network

Comparison: Thick film – Thin film – Thin film network

Simulation of R-value drift (based on specification)

RK73H	(Absolute: $\pm 0.5\%$, ± 100 ppm/K)	Thick film chip resistor
RS73F	(Absolute: $\pm 0.1\%$, ± 25 ppm/K)	Thick film chip resistor
RN73H	(Absolute: $\pm 0.1\%$, ± 25 ppm/K)	Thin film chip resistor)
HVD	(Relative: 0.1%, 10 ppm/K)	Thin film precision network

	① Chip (RK73H)		2 Chip (RS73F)		3 Chip	(RN73H)	④HVD
	Absolute	Relative	Absolute	Relative	Absolute	Relative	Relative
R Tolerance	±0.5 %	1.0 %	±0.1 %	0.2 %	±0.1 %	0.2 %	0.1 %
T.C.R (+25°C→+125°C)	±1.0 %	2.0 %	±0.25 %	0.5 %	±0.25 %	0.5 %	0.1 %
Resistance to Solder Heat	±1.0 %	2.0 %	±0.2 %	0.4 %	±0.05 %	0.1 %	0.1 %
Load Life (+85°C, 1000h) %1	±2.0 %	4.0 %	±0.2 %	0.4 %	±0.1 %	0.2 %	0.1 %
Rapid change of Temperature (-55°C/155°C, 1000cyc)	±0.5 %	1.0 %	0.2 %	0.4 %	±0.25 %	0.5 %	0.1 %
Total		10 %		1.9 %		1.5 %	0.5 %
Drifting factor after calibration in red		7 %		1.3 %		1.2 %	0.3 %

*1 – Actual temp. condition of thick film is 70°C.

Specification given herein may be changed at any time without prior notice.

Copyright © KOA Europe GmbH. All rights reserved.

Confidential

Thank you very much for your attention

https://koaeurope.de/newsletter/