

Low Power IoT System Design with Infineon Wi-Fi and MCUs

Graham Smith

Introduction – Low Power in IoT designs

- Wi-Fi IoT Architectures and Portfolio
- CYW43012 Radio and PSoC 6 MCU Low Power Features Overview
- Power Optimization Techniques Wi-Fi and MCU
- Low Power Assistant (LPA) library Overview
- Demo Optimizing MQTT Cloud example for Power
- Getting Started and Resources

IoT-AdvantEdge[™] Core Strengths

CONNECT

Unfailing connectivity with best-inclass range and interoperability; delivering excellent consumer experience

COMPUTE

IoT-optimized MCU solutions that deliver security, powerefficiency, and data intelligence at the edge, while enabling engaging human-machine interfaces

CREATE

Flexible, open-architecture platform enabling designers to craft unique, future-proof IoT systems from a comprehensive menu of preconfigured building blocks

Complete view of IoT design complexities; Unique ability to offer comprehensive solutions

IoT-AdvantEdge[™] Solves Critical IoT Design Problems

Connectivity

Getting products to work seamlessly in a field of multiple wireless technologies; dual-band Wi-Fi and BT

Ease-of-Use

Making technology plug-and-play Behind-the-scenes software updates Voice commands and other simple interfaces

Security

Compliance with emerging privacy and security requirements

Integration

Making disparate technologies work together seamlessly

HMI

Aesthetically attractive industrial design enabled by state-of-the-art HMI

Cloud

Secure, scalable device management with easy on-boarding supporting major platforms or in-house servers

Low Power

Operating on low power for long periods Heat dissipation Addressing environmental issues

Enhanced profitability through reduced support costs

Secure lifecycle management enables feature upgrade/maintenance

Proven, secure, connected, flexible, and robust: Built for the future

Wi-Fi IoT Architectures and Portfolio

Wi-Fi Product Portfolio

Wi-Fi +Bluetooth Combos

Infineon's Wi-Fi and Bluetooth combos use production-ready, fully-certified Wi-Fi + Bluetooth combo modules based on both Linux and RTOS based platforms. Many of the Wi-Fi + Bluetooth combos are supported on Infineon's WICED Wi-Fi and ModusToolbox Software Development Kits (SDK) which provide code examples, tools and development support for easier and faster development.

<u>Wi-Fi</u>

Infineon's Wi-Fi portfolio provides highperformance, flexible connectivity for Linux, Android, and RTOS. Many of the Wi-Fi + Bluetooth combos are supported on Infineon's WICED Wi-Fi and ModusToolbox Software Development Kits (SDK) which provide code examples, tools and development support.

Wi-Fi IoT Device Architectures

Architecture 1

- > External Host MCU or MPU running WWD/WHD
- > Radio only wireless module

Pros

- > Lowest cost partner module option
- Good MCU flexibility

Cons

- Moderate design complexity
- > External platform support required

Examples

- Laird Connectivity Sterling-LWB5+ (CYW4373E)
- Murata 1LV (CYW43012)

Wi-Fi IoT Device Architectures

Architecture 2

- > System/Applications Processor
- > Interfacing with integrated Partner Module containing MCU Host (running WWD/WHD) + Radio

Wi-Fi IoT Device Architectures

Architecture 3

- > Wireless Partner Module contains single-chip, Infineon Wi-Fi SoC that runs WWD/WHD
- > Potentially could be used in Architecture 1 as well with separate

Pros

- > Easy to design-in with single chip
- Low cost

Cons

 Potentially limited interfaces and application capability

Examples

- > Murata 1PS (CYW54907)
- > Murata 1GC (CYW43907)

PSoC 6 MCU Portfolio

Ultra-Low-Power | Flexibility | Hardware-Based Security and Root of Trust

CYW43012 Wi-Fi/Bluetooth Radio and PSoC 6 MCUs

ICW Wi-Fi PL Product Update: CYW43012 - DB 1x1 11n/11ac + BT 5.2

Key Features / Value Propositions

- 802.11n and 802.11ac-friendly MCS8 (256-QAM) for 20 MHz channels
- 802.11ac explicit beamformer support
- Best-in-class power consumption in active and power saving modes with MCU offload
- SDIO for WiFi with HCI over UART/SPI or embedded Bluetooth host stack in ROM
- Integrated IPv4/ IPv6 network stack on-chip
- Operating temperature range: -20 to +70C
- Support for both RTOS and Linux/Android (A-Class) host designs

Target Applications

- Wearables, Smart Home products and Portable Audio devices
- All Smart consumer products where maximum Battery Life is required
- IoT Edge Nodes where basic 802.11ac AP/Router compatibility is required

Development Kit

- IFX Kit: CY8CKIT-062S2-43012 (PSoC 62 + Murata 1LV) Now
- IFX Kit: CYW9P62S1-43012EVB-01 (PSoC 62 + CYW43012 Integr. Module) Now
- IFX Kit: CY8CKIT-064B0S2-43012 (PSoC 64 Secure Boot + Murata 1LV) Now
- IFX Kit: CY8CKIT-0640S2-43012 (PSoC 64 AWS MCU + Murata 1LV) Now
- Embedded Artist Murata 1LV M.2 Module Card (EAR00323, Linux) Now

Module Availability Update

Azurewave (AW-AM497): Production: Now (Started Jan '21) Murata Type 1LV (LBEE59B1LV): Production Now (Started Jan '19)

CYW43012 Wi-Fi/BT Radio ULP 28nm Design with Enhanced Deep Sleep

RECEIVE

50% ↓ power consumption than existing 40nm 802.11n products

70% ♦ power consumption than existing 40nm 802.11ac products

LOW POWER

80% \checkmark Sleep power consumption than existing 40nm 802.11n products

50% to **60%** ↓ Idle & Ready Mode power consumption than existing 40nm 802.11n products

CYW43012 is a game-changer!

~50% power savings in 2.4GHz DTIM 1 & DTIM 3 ~46% power savings for 2.4 GHz RX (MCS7) ~28% power savings for 2.4 GHz TX (MCS7)

		CYW4343W			CYW43012		
		VBAT (3.6 V) mA	VDDIO (1.8 V) μΑ	Total Power Consumption from Battery (mW)**	VBAT (3.6 V) mA	VDDIO (1.8 V) μΑ	Total Power Consumption from Battery (mW)**
Radio Off		0.0035	0.08	0.013	0.0012	0.3	0.005
SLEEP, IEEE Power Save, Inter Beacon		0.0058	80	0.181	0.003	88.0	0.187
2.4GHz DTIM 1		1.05	74	3.928	0.447	93.0	1.795
2.4GHz DTIM 3		0.35	86	1.432	0.156	88.0	0.738
WLAN 2.4G	Rx MCS7 HT20	41	12	140.4	21	375	76.350
	Tx MCS7 HT20 18dBM	260 (15 dBm)	15	936.0	187	1400	676.000
WLAN 5G	Rx MCS7 HT20	—			21.5	770	78.940
	Tx MCS7 HT20 18dBM	—			265	1600	957.200

**Assuming 3.6V VBAT direct from battery and 1.8V VIO from a 90% efficiency external buck connected to 3.6V battery

ICW MCU PL Product Update: PSoC 6-2MB (CY8C62xA)

Key Features / Value Propositions

- High-performance PSoC 6 device ideal as an IoT Host MCU. Large on-chip memory (2048 KB Flash, 1024 KB SRAM) with dual core CPU for running Edge Compute + Secure + Cloud connected applications
- Features 2 Secure Digital Host Controllers that can be configured as a SDIO interface to be used with Infineon Wi-Fi/Bluetooth Combo Radios (CYW4343W/8, CYW43012 currently with more coming)
- Industry leading CapSense as well as Dedicated Audio processing hardware blocks
- Up to 102 GPIOs. 16 Smart I/Os to integrate external digital logic.

Target Applications

- Smart Home, Wearables, IoT Gateways
- Home Appliance HMIs, Audio Processing,
- Potential applications where Wi-Fi and Sensor Fusion and/or ML is required

Development Kit

- PSoC 62 + CYW43012 Pioneer Kit (CY8CKIT-062S2-43012)
 - Arduino compatible headers connect to sensors, graphics shields
 - CapSense touch buttons and slider
 - External Excelon F-RAM nonvolatile memory
 - PSoC 62 hosts the low power CYW43012 radio in the Murata 1LV module

Availability Update

Silicon Production: Now \rightarrow (started April '20)

Kit Production: Now \rightarrow (started 2019)

PSoC 6: Purpose-Built for the IoT

Emerging IoT devices require increased processing and security without a power or cost penalty

Infineon's <u>PSoC</u> 6 portfolio bridges the gap between application processors and standard microcontrollers

- > 150-MHz and 100-MHz dual-core Arm[®] Cortex[®]-M4 and Arm Cortex[®]-M0+ ultra-low-power 40-nm architecture
- Industry-leading ultra-low-power design that consumes as little as 22-µA/MHz in active power mode¹
- > Best-in-class flexibility with wired and wireless connectivity options, software defined peripherals and industry-leading CapSense®
- Integrated, hardware-based Trusted Execution Environment (TEE) with secure data storage

^{*}Linked terms are defined in the <u>Glossary</u> ¹ Power specifications are based on the Arm Cortex®-M4 CPU

PSoC 6: Ultra-Low-Power IoT Solution

Power Mode	Current Consumption	Code Execution	Digital Peripherals Available	Analog Peripherals Available	Clock Sources Available	Wake-Up Sources	Wake-Up Time
Active (M4)	5.82-mA @ 150-MHz (LP ¹) 1.43-mA @ 50-MHz (ULP ²)	Yes	All	All	All	-	-
Active (M0+)	3.43-mA @ 100-MHz (LP) 0.75-mA @ 25-MHz (ULP)	Yes	All	All	All	-	-
Low-Power Active (M4)	380-µA @ 8-MHz	Yes	All	All	8-MHz IMO ³	-	-
Deep-Sleep	7.0-µA	No	WDT ⁴ , SCB ⁵	Comparator, POR ⁶ , BOD ⁷	32-kHz ILO ⁸	Comparator, GPIO, WDT, DS-SCB	10-µs, 100-µs ⁹
Hibernate	300-nA	No	No	Comparator, POR	No	Comparator, GPIO, RTC	500-µs

The PSoC 6 MCU Architecture¹⁰ reduces energy consumption without sacrificing performance with:

- > Dynamic voltage and frequency scaling enabling both performance- and power-critical processing
- A dual-core architecture, where the Cortex[®]-M0+ can be used as an offload engine for power efficiency, allowing the main Cortex[®]-M4 core to sleep
- > An ultra-low-power system, where the Cortex[®]-M4 consumes 22-µA/MHz and the Cortex[®]-M0+ consumes 15-µA/MHz

PSoC 6 sets a new, industry-leading low-power benchmark for today's IoT devices

¹ Low-power active mode (1.1-V operation)
 ² Ultra-low-power active mode (0.9-V operation)
 ³ Internal main oscillator

⁴ Watchdog timer serial communications block

⁵ Serial communications block ⁶ Power-on-reset ⁷ Brownout detect
 ⁸ Internal low-speed oscillator
 ⁹ Low-power active and active modes, respectively ¹⁰ Built on a 40-nm ultra-low-power process, providing the lowest power, most flexibility, and most secure architecture for the IoT

Power Optimization Techniques

Wi-Fi: IEEE 802.11 Power Save

> Power Save with Poll (PS-Poll)

¹ Access Point provides infrastructure for other Wi-Fi devices to connect to a wired network

² Station is any device capable of using Wi-Fi protocol

³ Beacon is a periodic frame (102.4 ms) transmitted by the AP broadcasting the network capabilities and traffic information

⁴ Traffic Indication Map in a beacon frame indicates whether a station has data buffered for it or not

⁵ Delivery TIM in a beacon frame indicates whether the presence of multicast or broadcast data for the STAs in the network

> Power Save without Poll

> Functionalities executed by WLAN device (CYW43012) on behalf of host

✓ More time for Host in low-power mode

Address Resolution Protocol (ARP) – Maps device IP address to its MAC address

ARP Ping without offload

ARP Ping with offload

Wi-Fi: ARP offload

> ARP Offload

ARP Ping without offload

📮 Elle Edit Tools Data Logger Help 🕧 📌 Scope Data Logger 🔤 CCDF AM ARB Edit Jools Data Logger Help 🕧 🕫 🕫 Scope Data Logger CCDF AM ARE - 5 > Error Log -PSoC6 A-PSoC6 A-43012 15,701 25,701 30 701 35.701 40 701 45 701 50,701 55 701 01:00.701 15,538 20.538 25.538 30.538 35.50 40.538 45.538 50.50 55.518 0100538 01:05.538 11 1 11 1 > >> ⊕ 🖓 Auto Scroll Ranges... AUTO SCALE □ 🔍 🔍 🔍 Markers & Measurements Markers & Measurements ⊕ 🖓 Auto Scroll Ranges... AUTO SCALE □ 🖉 🔍 🔍 Marker 1 27,791483 s Measurements Between Markers $\Delta = 22.617334 \text{ s}$ Marker 2 50.408817 s Marker 1 16.236954 s surements Between Markers Δ = 18.435669 s Marker 2 34.673623 s Time Time (++) Avg 24.697 uA Ανα Max Peak to Peak Charge / Energy Avg 24.967 μΑ Avg 23.955 uA Peak to Peak Charge / Energy Avg 22.928 μΑ -54.375 µA 8.546033 mA -44.775 μA 1.775 μA 24.31 µA 1.637722 mA 154.128 µA 61.726688 mA A-PSoC6 18.213985 mA 18.26836 m/ 53.691 µA h A-PSoC6 109.353 µA 125 nA h 62 420908 mA 62 426977 m4 13 72 114 61 728463 ma 8 387 114 1 5 s / * Duration: 000-05-30 File: dataloodata53. Trinner, Data Lon Run Burto 145854 5.s./ * Duration 000-05-30 Period File: datalogdata? Trigger Data Log Run But 145854 Period: 100352 ms Min/May Source 1.00352 ms Min/Max Source CHITPHITS VI - dataopticist POWING // VI - transpictust VI - V S0 mA / * E2 * S0 mW / * E3 * 1 1 V / * 50 mA / * 3 2 50 mW / * V 1V/ * SomA/* SomW/* 5 * <u>1V/</u> * 5 * <u>1V/</u> * 5 * <u>1V/</u> * Data Log 1 91 1V/ * 1 10 mA/ * 1 91 50 mW/* 1 10 mA/* 2 2 50 mM / * V 1V/ * 50 mA/ * 3 12 50 mW/ * Data Log Ab 1VJ * 50 mA/* O B Connect Connect 92 S0 mW / * 84% Avg Avg 24.31 µA 8.546033 mA 43012 1.637722 mA 2.183826 mA PSOC 6

ARP Ping with offload

Wi-Fi: Packet Filter Offload

Packet Filter – Block unwanted network traffic

Network

Offload with discard filter for Ping packets

WLAN

>

Wi-Fi: Packet Filter offload

Packet Filter – with minimal filters enabled (DHCP, ARP, 802.11x, DNS)

ARP Ping from Network

Ping (ICMP) from Network

01:20.04

Wi-Fi: TCP Keep Alive

> **TCP Keep Alive** – Maintain active TCP connection without interrupting the host

L DA Footuro	Decorintion ¹	Power consumption		
LFA Fediule	Description	Without LPA	With LPA	
Wi-Fi ARP offload	Enable host wake, Enable ARP offload and Suspend network stack	10.6 mA	1.6 mA (84%)	
Wi-Fi Packet Filter Offload	Enable host wake and minimal set of filters – ARP, DNS, DHCP, 802.11x security – to establish a Wi-Fi connection	7.7 mA	2.0 mA (74%)	
Wi-Fi TCP Keep Alive Offload	Enable host wake and TCP KeepAlive Offload with a Keep Alive interval of 3 seconds	19.5 mA	3.3 mA (83%)	

¹ All use mbed-os-example-wifi code example for adding the particular LPA feature

AWS IoT example – 80%

ModusToolbox[®] AnyCloud Stack

LPA: Overview

- > Self-aware firmware that detects configurations automatically and enables appropriate lowpower features without any additional API calls from the user
- > Supports multiple platforms such as Mbed OS and FreeRTOS (AnyCloud)
- GUI-based configuration for ease of use
- > Supports low-power configuration for PSoC 6 MCU, Wi-Fi and BT

Using ModusToolbox Configurator

Eile Edit Source Refactor Navigate Search Project Run Window Help ▼ 🍕 ▼ 副 🕪 🗉 🖷 対 ス ひ ふ 三元 三元 🖉 👌 🏘 ▼ 🗿 ▼ 💁 🖉 ▼ 📝 Quick Access Pr... 12 1 De... III Re... % Pe... Cycfg connectivity wifi.c psoc6make Irelease-v1.3.1 faab A #include "cycfg connectivity wifi.h" > soc6pdl [release-v1.5.1 de6eal] #define CYCFG_ARP_OL_ENABLED (1u) retarget-io (release-v1.1.0 1c21) > esecure-sockets [release-v1.0.1 2] static arp ol t arp ol 0 ctxt; TARGET CY8CKIT-06252-430 static const arp_ol_cfg_t arp_ol_cfg_0 = > COMPONENT BSP DESIG .awake enable mask = CY ARP OL FEATURE AWAKE ✓ m > GeneratedSource .sleep enable mask = CY ARP OL FEATURE SLEEP > 📝 > cycfg_capsense.c .peerage = CY_ARP_OL_PEER_AGE_0, > B > cycfg_capsense.h 5 static const cy_pf_ol_cfg_t cy_pf_ol_cfg_θ[] = > is > cycfg_clocks.c > B > cycfa clocks.h [0u] = {.feature = CY_PF_OL_FEAT_LAST}, > G cycfg_connectivity_wifi R cycfg_connectivity_wifi static const ol_desc_t ol_list 0[] = $> \mathbb{R} > cycfa notices.h$ [0u] = {"ARP", &arp_ol_cfg_0, &arp_ol_fns, &a > 🖾 > cycfq_peripherals.c [2u] = {NULL, NULL, NULL, NULL}, > B > cycfg peripherals.h }; > is > cvcfa pins.c > B > cycfg_pins.h const ol_desc_t *cycfg_get_default_ol_list(void) * > < Writable Smart Insert

LPA: Features

- > Supported features -
 - MCU Low Power
 - Wi-Fi and Bluetooth Low Power
 - Wi-Fi Address Resolution Protocol (ARP) Offload
 - Wi-Fi Packet Filter Offload
 - Wi-Fi TCP Keepalive Offload
- > AnyCloud 1.0 support and later
 - LPA v2.0.0 and ModusToolbox 2.1 and later
- > Mbed OS support
 - LPA v1.0.0 and Mbed OS 5.14.2 or later
- > Provides Quick Start Guide for features supported

LPA Walkthrough Demo

🎴 Library	Manager 1.2				- 🗆 X		
<u>S</u> ettings	<u>H</u> elp						
Directory:	C:/Users/SmithGraham/Documents/CustomerData/rutronik/LPA_DEMO Browse						
Project:	C:/Users/SmithGraham/Documents/Cu	ustomerData,	/rutronik/LPA_DEMO		•		
Active BSP:	: CY8CKIT-06252-43012						
Enter filter	text		7 6 6	1	LPA		
BSPs	Libraries				LPA is Low power assistant middleware library which provides easy way to configure and use low power features of Cypress devices.		
Name	*	Shared	Version	•	Version details: Latest 3.X release		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 mtb-pdl-cat1 psoc6cm0p recipe-make-cat1a Middleware Middleware libraries aws-iot-device-sdk-embedded-C AWS-ioT-Device-SDK-Port command-console connectivity-utilities HTTP-Client http-server TPA IwIP modTLS MQTT OTA secure-sockets SmartCoex 	× × × × × × × × × × ×	Latest 2.X release Latest 2.X release Latest 1.X release Latest 1.X release Latest 1.X release Latest 2.X release Latest 3.X release Latest 3.X release Latest 3.X release Stable 2.16.7 release Latest 3.X release Latest 3.X release Latest 2.X release				

Click "Update" to make these changes on the project:

LPA: add Latest 3.X release shared

INFO - Multiple versions of freertos requested. Keeping version release-v10.0.1 and discarding version latest-v10.X. INFO - You have specified to use "freertos release-v10.0.1". There is a newer version available.

CY8C624ABZI-S2D44 CYW43012C0WKWBG	Wi-Fi - Parameters		0
inter filter text	Enter filter text		<u>/</u> U E E
	Name	Value	A
esource Name(s) Personality	 Documentation 		
BT Coex coex_0_bt_0	⑦ Configuration Help	Open Low Power Assistant Documentation	
• Power	 Host Wake Configuration 		
BT bt_0_power_0	③ Enable		
✓ Wi-Fi wifi_0_power_0 WiFi-1.0 ▼	⑦ Host Device Interrupt Pin	P4[1] (CYBSP_WIFI_HOST_WAKE)	-
	WiFi Device Interrupt Pin	GPIO_0 (WL_HOST_WAKE)	
	▼ ARP Offload		
Volic (x)= Varia 6 Expr 0 Brea	⑦ Enable		
	② ARP Offload Feature(s)	Peer Auto Reply	•
	③ Snoop Host IP From Traffic When ARP Offload E	nabled	
· ····································	③ ARP Offload Cache Entries Expire After (s)	1200	
LPA DEMO Program (KitProg3 MiniProg4)	✓ AWS MQTT Filters		
	(?) Enable MQTT TLS Filter		
Generate Launches for LPA DEMO	(?) Enable MQTT Filter		
	MQTTTLS Filter Configuration Silter ID	A. 0	
* Tools	() Action	Koop	
0013	Action	A Always	· · · · ·
V Library Manager 1.2	When Active		
and clothy manager ne	() Protocol		*
Bluetooth Configurator 2.20 (new configuration)	Direction	Source Port	~
	(?) Port Number	8883	
CapSense Configurator 3.10	Packet Filters Add Minimal Set of Keen Filters		
CanSanan Tunan 2.10	Prable Filter Configuration 0		
Capsense runer 5.10	 Enable Filter Configuration 1 	· · · · · · · · · · · · · · · · · · ·	
Device Configurator 2.20	② Enable Filter Configuration 2	\checkmark	
	⑦ Enable Filter Configuration 3	V	
Device Firmware Update Tool 1.30	② Enable Filter Configuration 4		
	⑦ Enable Filter Configuration 5		
Power Estimator 1.2	Wi-Fi - Parameters Code Preview		
SPI Configurator 2.20			
V.			

Getting Started

PSoC® 62S2 Wi-Fi BT Pioneer Kit

Resources

Action	Link
Download the App Note	Low Power System Design with CYW43012 and PSoC 6 MCU
Learn About the Products	PSoC 6 MCU CYW43012 Wi-Fi/Bluetooth Radio IoT-AdvantEdge: Power Efficient Solutions Page
Get the Software	ModusToolbox 2.2 Software Environment Low Power Assistant Library
Download Code Examples	AnyCloud LPA examples Mbed OS LPA examples
Join the Infineon Community	Community home page

Part of your life. Part of tomorrow.