

PC Speaks the Language of the Field in the Age of Industry 4.0

Markus Demaria

Introduction

About HMS

Trend: Use of (standardized) IPCs

Coming from simple control, today's systems are multi language capable.

Solutions for industrial communication on IPCs

How can HMS bring value to your Application

Outlook

What use cases can be solved in addition

Introduction

About HMS

Trend: Use of (standardized) IPCs

Coming from simple control, today's systems are multi language capable.

How can HMS bring value to your Application

Outlook

What use cases can be solved in addition

HMS stands for Hardware Meets Software™

Hindware Meets Software™ with HMS products

Enabling machine communication in many fields

Introduction

About HMS

Trend: Use of (standardized) IPCs

Coming from simple control, today's systems are multi purpose capable.

Solutions for industrial communication on IPCs

How can HMS bring value to your Application

Outlook

What use cases can be solved in addition

Hins Trend: Use of (standardized) IPCs

Transition in the Industry

- Applications require increased computation or memory perfomance
- IPCs getting more and more compact
- Use of standardized components

- Operating system available
- More services can be used
- Development cycles are becoming shorter
- Software becomes more important

нтя Trend: Use of (standardized) IPCs

To be found in numerous applications

нійя Trend: Use of (standardized) IPCs

But...

Trend: Use of (standardized) IPCs

Coming from simple control, today's systems are multi purpose

Solutions for industrial communication on IPCs

How can HMS bring value to your Application

Outlook

Industrial Communication

Manifold industrial networks **One PC-interface**

DOXAT

Ixxat INpact Interface

Features

- Industrial grade switch / hub features
- Complete real-time capabilities
- De-coupling of PC from real-time task
- High-performance Low latencies
- Efficient HMS NP40 network technology

Features

- Multiprotocol support (Anybus NP40)
- Comprehensive C-API based driver package for Windows & Linux

System Architecture

Industrial Communication Today

- In a fieldbus / Industrial Ethernet network the following data are exchanged between a field device and a controller
 - Cyclic process data
 - Network and system status messages
 - Acyclic parameter data
 - Device diagnostics information

Industrial Communication Today

- The major PLC vendors each have specified their own fieldbus and/or Industrial Ethernet variants and implemented in their controllers
- These are supported by the respective network user organizations
- Here is a table of the most important ones:

Controller Manufacturer	User Organization	Fieldbus	IE-Network
Siemens	PNO / PI	PROFIBUS	PROFINET
Phoenix	Interbus Club / PI	Interbus	PROFINET
B&R	EPSG		POWERLINK
Beckhoff	ETG		EtherCAT
Bosch	CiA	CANopen	SERCOS III
Rockwell / Allen Bradley	ODVA	DeviceNet ControlNet	Ethernet/IP
Mitsubishi	CLPA	CC-Link	CC-Link IE
Schneider	Modbus Organisation	Modbus RTU Modbus Plus	Modbus TCP

What does "Industrial Communication" mean?

Industrial Communication Tomorrow

- Interconnection is increasing
 - within a production plant (from equipment to equipment)
 - in between production plants (from facility to facility)
- More communication tasks will be added to control the system
 - Quality assurance
 - Preventive maintenance
 - Production planning (ERP(<u>E</u>nterprise <u>R</u>esource <u>Planning</u>) + MES(<u>Manufacturing Execution System</u>))
 - Visualization (SCADA(<u>Supervisory Control and Data Acquisition</u>))

• ...

- IIoT (<u>Industrial Internet of Things</u>)
 - Direct communication between machines / devices among themselves

The communication concept

• Four logic channels between Ixxat INpact and Application

 Except for process data, all data (including parameters and diagnostics data) are transmitted by means of command / response messages

The communication concept

- Input process data (from host application) stored in the module as the process image
- Acyclic read and write commands by the to uniform messages (messages: commands and responses) between Ixxat INpact and host application

• Data is structured into objects, instances, and attributes and accessed by messages

Object / Instance / Attribute

- Every object has its own object attributes and consists of at least one instance (01h)
- Every instance has 1..n instance attributes
- All instances within an object have the same set of attributes
- Read and write operations to attributes are done by messages

There are...

 Objects inside the ABCC: Anybus Objects (01h, 02h,)

 Objects inside the Host Application: Host Application Objects (FFh, FEh,)

Transmission of Parameter Data

 Acyclic accesses by different PLCs (Siemens, Rockwell, ...) with different networks (PROFINET, EtherNet/IP, ...) to an application parameter are translated into the same network independent command towards the Host Application:

Get_Attribute (Application Data Object (FEh), Instance xx, Attribute 05h)

Transmission of Parameter Data

Example: acyclic access to parameter data for different networks and the Ixxat INpact's translation into a network independent command towards the host application

The only data **NOT** being transmitted by messaging

- Only process data ("I/O data", "fast data", "cyclic data") are NOT being transmitted over messaging
- The host application sends its input process data (target: PLC) as a byte stream to the Ixxat INpact
- The Ixxat INpact sends its output process data (target: host application) as a byte stream to the host application
- Process data transmission is unacknowledged, i.e. the sender does not check if the receiver has received the data. The receiver also does not notify the sender if data were transmitted correctly, with errors, or not received at all.

Transmission of Process Data

• Cyclic process data are stored inside the Ixxat INpact as a process image

Implementation Steps at a glance

- Specify the device's (hard- and) software
- Implement (hardware and) software
- Setup a test environment
- Create configuration files for supported networks (e.g. GSDML file for PROFINET)
- Create user manual (for all supported networks) (also necessary for certification tests)
- Perform EMC tests (on the device with integrated Ixxat INpact)
- Perform certification tests
- Staff training (sales, tech support)

Introduction

About HMS

Trend: Usage of (standardized) IPCs

Coming from simple control, today's systems are multi purpose capable.

Solutions for industrial communication on IPCs

How can HMS bring value to your Application

Outlook

What use cases can be solved in addition

Hins Outlook

Additional advanced features

- Socket Interface
 - Allows additional types of communication to different devices over TCP or UDP socket connections (like configuration, diagnostics data, and log files to other communication partners)
- Energy Measurement
 - Allows the transmission of energy and power values to the PLC over the network.
- Energy Control
 - Allows switching the device to different operating and energy saving modes over the network.

Allows the implementation of **PROFlenergy** profile

Example: GSD Generator Tool

fileBody>	
<deviceidentity deviceid="0x0010" vendorid="0x010C"></deviceidentity>	
<infotext textid="T ID DEV DESCRIPTION"></infotext>	
<vendorname value="HMS Industrial Networks"></vendorname>	
<devicefunction></devicefunction>	
<family mainfamily="General" productfamily="Device ABCC 40 PIR"></family>	
<applicationprocess></applicationprocess>	
===================================</td <td>></td>	>
List of Device Access Points (DAP)</td <td>></td>	>
===================================</td <td>></td>	>
<deviceaccesspointlist></deviceaccesspointlist>	
<pre><deviceaccesspointitem)<="" id="DAP" moduleidentnumber="0x80010000" physicalslots="064" pre=""></deviceaccesspointitem></pre>	MinDeviceInterval=
<moduleinfo></moduleinfo>	
<name textid="T ID DAP"></name>	
<infotext textid="T ID DAP DESCRIPTION"></infotext>	
<pre>KVendorName Value="HMS Industrial Networks"/></pre>	
<pre><ordernumber value="ABCC40-PIR"></ordernumber></pre>	
<certificationinfo applicationclass="" conformanceclass="C" netloadclass="III"></certificationinfo>	
<subslotlist></subslotlist>	
<subslotitem subslotnumber="32768" textid="T ID SS INTERFACE"></subslotitem>	
<subslotitem subslotnumber="32769" textid="T ID SS PORT1"></subslotitem>	
<subslotitem subslotnumber="32770" textid="T ID SS PORT2"></subslotitem>	

HMS PROFINET GSD Generator Tool	
le Help	
1. Network Adapters	3. Module identification
Internal Ethernet Adapter	▼ VendorID DeviceID
	0× 010C 😯 0× 0010 😯
2. Scan for modules	MainFamily
	General
Scan	VendorName
	HMS Industrial Networks
	ProductName
	Orde Musel an
	ABCC40-PIR 2
	ImageName
	GSDML-010C-0010bmp
4. Functionality	
Conformance Class	Physical medium
Conformance Class C (IRT)	▼ Copper ▼
🔽 IM 5 supported 💡	🔲 Asset Management supported 😲
5. Generate GSD	
Genera	ate GSD

Hins Outlook

Example: ESI Generator

<Vendor>

<Id>#xE000001B</Id>

<Name>HMS Industrial Networks</Name>

</Vendor>

<Descriptions>

<Groups>

<Group>

<Type>EmbeddedModules</Type>

<Name LcId="1033">Communication adapters</Name>

</Group

</Groups>

<Devices>

<Device Physics="YY">

<Type ProductCode="#x00000036" RevisionNo="#x00010004" Anybus CompactCom 40 EtherCAT /Type <Name LcId="1033">

<! [CDATA[Anybus CompactCom 40 EtherCAT]]>

</Name>

<Info>

<Mailbox>

<Timeout>

(Demus

<RequestTimeout>100</RequestTimeout> <ResponseTimeout>6000</ResponseTimeout>

<Responserimeout>0000</Responserime

</Timeout>

</Mailbox>

</Info>

<GroupType>EmbeddedModules</GroupType>

<Fmmu>Outputs</Fmmu>

<Fmmu>Inputs</Fmmu>

<Fmmu>MBoxState</Fmmu>

<sm MinSize="34" MaxSize="1486" DefaultSize="276" StartAddress="#x2000" ControlByte="#x26"
<sm MinSize="34" MaxSize="1486" DefaultSize="276" StartAddress="#x2800" ControlByte="#x22"
<sm MinSize="34" MaxSize="1486" DefaultSize="276" StartAddress="#x2800" ControlByte="#x22"
</pre>

<Sm StartAddress="#x1000" ControlByte="#x64" Enable="1">Outputs</Sm>

<Sm StartAddress="#x1800" ControlByte="#x20" Enable="1">Inputs</Sm>

- -🛞 HMS EtherCAT ESI Generator File Help Basic Advanced (Optional) CoE init commands (Optional) Image Data (Optional) Names ื่อ Vendor Image: Vendor Name HMS Industrial Networks ø 0 Group Type 0 Browse. EmbeddedModules റ Group Name Group Image: Communication adapters ื่อ 0 ื่อ Browse. Device Image: Ð 0 Browse.. Network Adapters Load ESI file... (Optional) (- 0 Local Area Connection 🔲 Use loaded file as base. 😰 Slave n ื่อ Create ESI file ... Ø

Example: EtherNet/IP EDS Generator

\$ HMS EDS Generator Tool Version 1.0.1.2. Generated Electronic Data Sheet. [File] DescText = "CompactCom 40 EtherNet/IP(TM)"; CreateDate = 02-07-2017; CreateTime = 10:36:19; ModDate = 02-07-2017;ModTime = 10:36:19; Revision = 1.00; [Device] VendCode = 90; VendName = "HMS Industrial Networks AB"; ProdType = 43; ProdTypeStr = "Generic Device (keyable)"; ProdCode = 55; MaiRev = 1; MinRev = 30;ProdName = "CompactCom 40 EtherNet/IP(TM)"; Catalog = "CompactCom 40 EtherNet/IP(TM)"; [Device Classification] Class1 = EtherNetIP; [Params] Paraml = Ο, \$ Reserved (always 0) Ο, \$ Link path size "", \$ Link path 0x0010. \$ Descriptor OxC3. \$ Data type (Signed 16-bit integer value) 2, \$ Data size "Speed", \$ Parameter name ••• \$ Units string "", \$ Help string -500, \$ Minimum value 500, \$ Maximum value Ο, \$ default value \$ Scaling multiplier (not used) \$ Scaling divider (not used) \$ Scaling base (not used) , \$ Scaling offset (not used) \$ Multiplier link (not used) \$ Divisor link (not used)

Interface	Intel(R) 825671 M-3 G	ashit Network Connection 192 168 1 225		
Interface	[Intel(IQ 02507EIM-5 0			
Device	192.168.1.57 - Compa	ctCom 40 EtherNet/IP(TM) (v1.30)	Jpload from device	
Start A	ssembly Connection	QuickConnect Generate EDS		
Assembly	identifier	Name (editable)	Include	
Assem3		Heartbeat, Input Only		
Assem4		Heartbeat, Listen Only		
Assemb		Heartbeat, Input Only Extended		
Assem7		Heartbeat, Listen Only Extended		
Assem150		Consuming Data		
Assem100		Producing Data		

STAY CONNECTED!

www.hms-networks.com