

ST Sensor Solutions for Condition Monitoring and Predictive Maintenance

EMEA Marketing and Application

June 2020

Webinar with Rutronik

Agenda

Condition Monitoring and Predictive Maintenance overview

Predictive Maintenance A smart industry hot topic

Preventive Maintenance (scheduled)

Predictive Maintenance (at the optimal moment)

Predictive Maintenance Benefits

Reduced lost production time

Maintenance on the production line only when needed and at the optimal time

Longer machine lifetime/lower effective cost

Replacing the minimum amount of parts before failure causes damage to others

Faster and more efficient repair

Optimized worker interventions and minimum labor for parts replacement

Increased safety

Prevents failures that could be dangerous for workers before they happen

IPF installation point failure curve Condition Monitoring

Typical use case Industrial motor monitoring

ISO 10816-3 standard Vibration evaluation of various machine types

- Standard defines measurement method and limits for vibrations of motor installations, for pumps standard 10816-7
- 3 orientations specified, with piezos 3 separate measurements needed
- Limits specified in velocity i.e. integrating of acceleration signal
- Medium sized motors, in rigid support, with Zone B acceptable limit equals to (1.4-) 2.8 mm/s RMS velocity limit

Zone A: The vibration of newly commissioned machines normally falls within this zone.

Zone B: Machines with vibration within this zone are normally considered acceptable for unrestricted longterm operation.

Zone C: Machines with vibration within this zone are normally considered unsatisfactory for long-term continuous operation. Generally, the machine may be operated for a limited period in this condition until a suitable opportunity arises for remedial action.

Zone D: Vibration values within this zone are normally considered to be of sufficient severity to cause damage to the machine.

Table A.1 — Classification of vibration severity zones for machines of Group 1: Large machines with rated power above 300 kW and not more than 50 MW; electrical machines with shaft height $H \ge 315$ mm

Support class	Zone boundary	r.m.s. displacement	r.m.s. velocity	
		μm	mm/s	
	A/B	29	2,3	
Rigid	B/C	57	4,5	
	C/D	90	7,1	
	A/B	45	3,5	
Flexible	B/C	90	7,1	
	C/D	140	11,0	

Support class	Zone boundary	r.m.s. displacement	r.m.s. velocity	
		μm	mm/s	
	A/B	22	1,4	
Rigid	B/C	45	2,8	
	C/D	71	4,5	
	A/B	37	2,3	
Flexible	B/C	71	4,5	
	C/D	113	7,1	

Predictive maintenance Changing the paradigm: moving the intelligence to the node

Typical block diagrams

Condition Monitoring block diagram Battery-operated smart sensor node

Condition Monitoring block diagram Vbus-powered industrial smart sensor node

MEMS for vibration analysis Sensors and defects over bandwidth

MEMS & Sensors for CbM and PdM

Function	IC	Description	Package	Features
	IIS3DWB	Ultra Wide Bandwidth Accelerometer	LGA-14, 2.5x3 mm	 3D Accelerometer – 16g Full Scale - Digital Output Ultra Wide Bandwidth (up to 6 kHz) Ultra Low Noise + up to 105°C operating Temp
Vibration	ISM330DLC ISM330DHCX	Wide Bandwidth Accelerometer + Gyroscope	ISM33doL C	 3D Accelerometer + 3D Gyro - Digital Output 3 kHz bandwidth accelerometer Ultra Low Power + Smart Features
VIDIATION	IIS2DH Wide Bandwidth, Ultra-low-power LGA-12, 2x2 mm •		 3D Accelerometer – Digital Output Up to 2.3 kHz bandwidth Ultra Low Power – Ultra Compact 	
	IIS2MDC	Low-Noise, Low Power Magnetometer	157 1152DH	 3D Magnetometer – Digital Output AMR Technology - Up to 50 Gauss Full Scale Ultra Low Noise, Low Power
Acquetic	MP23ABS1TR	Analog single ended Microphone	RHLGA metal cap 5-L, 3.5x2.65x0.98 mm	 Bottom port Microphone Wide Acoustic Bandwidth (up to 80 kHz) Wide Dynamic Range (AOP up to 130 dBSPL)
Acoustic	IMP34DT05-A	Digital Top Port Microphone	3x4x1 mm	 Top port Microphone with Digital Output Wide dynamic range (AOP up to 122 dBSPL) ESD up to ±15kVolt
	LPS22HH	High Accuracy – Compact Size Absolute Pressure Sensor	HLGA-10-L, 2x2x0.76 mm Ultra Compact full molded	 260 to 1260 hPa Range - Digital Output High Accuracy (±1 hPa) Low noise (0.75 Pa RMS)
Environ-	LPS27HHW LPS33W	Water Resistant Absolute Pressure Sensor	2.7x2.7x1.7 mm 3.3x3.3x2.9 mm	 260 to 1260 hPa Range - Digital Output High Accuracy (±2.5 hPa) + Low noise (0.8 Pa RMS) Water resistant up to 10 atm
mental	STTS22H	Digital Temperature Sensor	2 x 2 x 0.50 mm 6-lead UDFN	 Operating temperature -40 °C to +125 °C Accuracy: ±0.5 °C max (-10 °C to +60 °C) Programmable threshold, One-shot mode
	STLM20	Analog Temperature Sensor	SOT323-5L, UDFN-4L	 Accuracy ±0.5 °C (typ.) Operating Temp –55 °C to +130 °C

Focus on IIS3DWB vibration sensor

MEMS sensors vs. Piezoelectric

• MEMS Pros

- Low power, small size, low weight
- Cost effective
- Digital output: easy wiring and no need for external ADC or other signal conditioning circuits
- Fast recovery after high shock and in power up
- Frequency response includes DC
- Good stability over time and across temperatures
- Integrated self-test
- Embedded functionalities
- Cons
 - Lower achievable BW vs. Piezoelectric
 - Higher noise, lower resolution

IIS3DWB ultra-wide bandwidth, low-noise 3-axis digital accelerometer for vibration monitoring

Parameter	Value
N. of axis	3-axis
Full Scale [g]	±2/±4/±8/±16
Bandwidth (-3dB) [kHz]	6.3
ODR [kHz]	26.7
Output i/f	Digital: SPI
Noise Density [µg/√Hz]	75 (60 in single axis)
Current Consumption [mA]	1.1
Features	FIFO (3kbyte) Programmable HP Filter Interrupts Temp. Sensor Embedded Self Test
Operating Temp [°C]	-40 ; +105
Operating Voltage [V]	2.1 ÷ 3.6
Package [mm3]	LGA 2.5x3x0.83 14Lead

Pin2pin compatible with ISM330x/LSM6DSx devices

Link to final datasheet/product page: <u>https://www.st.com/en/mems-and-sensors/iis3dwb.html</u>

IIS3DWB KPIs for condition monitoring

#1 Low noise levels

#2 Wide & Flat measurement bandwidth

Flat frequency response, Sharp out of band roll-off, No aliasing

Stable thermal behavior over extended temperature range

IIS3DWB architecture

- The IIS3DWB architecture is composed of the following functional blocks:
 - MEMS mechanical element
 - ADC
 - Low pass digital filter (LPF1)
 - Composite digital filter (LPF2, HPF)

For full functionality SPI interface is recommended

IIS3DWB composite filter

IIS3DWB filtering chain

- The IIS3DWB is specifically designed to provide a wide bandwidth with very flat frequency response in the pass band and a high attenuation in the stop band to minimize any frequency aliasing
- The filtering chain is composed of:

ŧ

1	KPI Lo	ow noise level				
	Acceleration noise density 3 axes enabled ⁽⁶⁾		X-axis	75	110	μ <i>g</i> /√Hz
		Acceleration noise density 3 axes enabled ⁽⁶⁾	Y-axis	75	110	
			Z-axis	110	190	
	An		X-axis	60	90	
	Acceleration noise density only 1 axis enabled ⁽⁶⁾	Y-axis	60	90	-	
			Z-axis	80	130	1

IIS3DWB filtering chain

• The output of the ADC converter is filtered with a digital low pass filter LPF1 to ensure the intended sensor's frequency response:

#3 KPI

Sharp out of band roll-off (>90 dB/dec). Attenuation >70 dB at frequencies higher than ODR. High attenuation (>50dB) and very low folding of spectrum inside signal bandwidth.

IIS3DWB frequency response with LPF2 enabled

Life.augmented

Frequency response determined by CAD simulation – at the output of LPF2 in different configurations

- 3-axis Digital
- 6 kHz Bandwidth (@-3dB)
- Frequency response with Flat Pass Band, Steep roll-off (>90dB/dec) & high Stop Band attenuation (>70dB)
- Low Noise

Sensitivity drift vs. temperature

#4 KPI

IIS3DWB sensitivity drift over temperature range is negligible. Zero g offset drift over temperature is not important for a vibration sensor (DC component is not interesting)

Sensitivity drift vs temperature < $\pm 2\%$ @ V_{DD} 3.0 Volt ; from -40°C to +105°C delta from T= +25°C

SW + HW tools overview

IIS3DWB evaluation tool

STEVAL-MKI109V3 + STEVAL-MKI208V1K

- ProfiMEMS Tool <u>STEVAL-MKI109V3</u>
- IIS3DWB square board connectable to DIL24 adapter / ribbon cable (STEVAL-MKI208V1K)
- STSW-MKI109W Unico GUI MEMS evaluation kit software package for Windows
- Raw data logging, real-time FFT, register access and control over Unico GUI

Especially for Industrial Vous supply

STEVAL-BFA001V2B hardware overview

Multi-sensor predictive maintenance kit with IO-Link stack V1.1

- MotionSP Middleware
 - Programmable **FFT size** (256, 512, 1024, 2048 points)
 - Windowing (Flat Top, Hanning, Hamming, Rectangular)
 - Overlapping and acquisition time window
 - FFT averaging during acquisition time
 - Speed RMS moving average, acceleration max peak.
- Middleware integrating microphone algorithms also for PDM to PCM conversion, Sound Pressure Level (SPL), Audio FFT
- Third party middleware for IO-Link device stack V1.1 (provided by TEConcept GmbH):
- Programmable thresholds for warning and alarm condition in spectral band and time domain
- Application examples with **dedicated PC GUI** to plot data with STEVAL-IDP004V2 IO-Link master multi-port evaluation board ²⁸

Wireless connectivity is a game changer? STWIN is the answer

STWIN is the nickname for SensorTile Wireless Industrial node

STWIN is a kit made of:

- Hardware Board
- Battery + plastic case for field testing
- STLink-V3MINI + cable for programming

STEVAL-STWINKT1

STWIN SensorTile kit

life.augmented

STWIN SensorTile kit

STWIN SensorTile kit & expansion boards

STWIN software in st.com STSW-STWINKT01 and FP-IND-PREDMNT1

For development on PC and application demos in phone and cloud

EVALUATION TOOL SOFTWARE			For development (link)	
Picture	Part number 🗢	Manufacturer 💠	Description ≑	
	STSW-STWINKT01	ST	Firmware for STEVAL-STWINKT1 evaluation kit for predictive maintenance, smart industry, IoT and remote monitoring applications	

MCU & MPU EMBEDDED SOFTWARE		RE	For development & demos (link) \checkmark
Picture	Part number 🌲	Manufacturer 💠	Description ≑
	FP-IND-PREDMNT1	ST	STM32Cube function pack for multi sensors node with signal processing to enable predictive maintenance

EVALUATION TOOL SOFTWARE			
Picture	Part number 🌲	Manufacturer ≑	Description 💠
	STSW-STWINKT01	ST	Firmware for STEVAL-STWINKT1 evaluation kit for predictive maintenance, smart industry, IoT and remote monitoring applications

High-speed datalog STSW-STWINKT01

High-speed MicroSD logging run the demo

1. Program STWIN

with HS_DataLog.bin from STSW-STWINKT01 be sure you have SD card inserted Same BINARY file used for USB logging

BT > 🛄 This PC > _ STLINK_V3M (D:) > 💣 Network LED blinks green -STWINCS while logging R EVALUATION ONLY THERE

2. Log data

green LED blinks while logging

Press USR button to start and stop logging,

3. Enjoy demo

After finish of logging, data can be read/converted on PC from the microSD card by MATLAB script found in Utilities\HS_DataLog\ subdirectory or a Python script Install first Anaconda Python environment: https://www.anaconda.com/distribution/

Python script available in STSW-STWINKT01 v1.3.1

SD logging – STWIN MicroSD card directory tree

Memory MicroSD card

Data logs in binary format / must be converted in PC

Orange LED blinks during USB logging

High-speed USB logging Run the demo

2. Log data

From STSW-STWINKT01 VX.X.X\ Utilities\HS_DataLog\cli_example\bin run cli_example.exe and follow instructions

🔟 C:\Users\klara pacalova\Downloads\STSW-STWINKT01_V1.3.1\Utilities\HS_DataLog\cli_example\bin\cli_exan

TWIN Command Line Interface example ersion: 1.1.0 ased on : ST USB Data Log 1.1.0 Device information:

'alias": "STWIN 001", 'nSensor": 9, serialNumber": "PN3K33 0190001800024"

Using default configuration

Press any key to start logging

C:\Users\klara pacalova\Downloads\STSW-STWINKT01_V1.3.1\Utilities\HS_DataLog\cli_example\bin\cli_example.exe

400 200

-40

-600

HS DataLog acquiring from the board named :"STWIN 001", seri

eceived	3339000	total	bytes	from	IIS3DWB
eceived	2160	total	bytes	from	HTS221
eceived	177600	total	bytes	from	IIS2DH
eceived	12600	total	bytes	from	IIS2MDC
eceived	2007040	total	bytes	from	IMP34DT05
eceived	1671168	total	bytes	from	ISM330DHCX
eceived	30400	total	bytes	from	LPS22HH
eceived	8036352	total	bytes	from	MP23ABS1
eceived	352	total	bytes	from	STTS751
lapsed time:	21.95	55 seco	onds		
ress ESC to exit!					

3. Enjoy demo

After finish of logging, copy folder with data to Utilities\HS_DataLog\python and run ReadSensorData.py to plot the data

High-speed datalog Config examples

1. Copy desired config file

To STSW-STWINKT01_VX.X.X\ Utilities\HS_DataLog\cli_example\bin

www.communicads.communicada and an analyze was strained and a strain with the strain of the strai ~ Ō

\mathbf{A} Name 5 V AccMicSensors.json Name Date modified Type Size SS AccSensors.json 05032020 13 52 34 3/5/2020 1:52 PM File folder AllSensors.json 05032020 13 55 35 File folder 3/5/2020 1:55 PM ds cli_example 2/5/2020 2:04 PM File 174 KB AudioSensors.json its Cli example eve 293 KB 2/5/2020 2:04 PM Application EnvSensors.json **2.** Log the data 15 KB EnvSensors.json 2/5/2020 1:44 PM JSON File MotionSensors.json libgcc_s_dw2-1.dll 2/5/2020 2:04 PM Application extens... 112 KB Run cli_example.exe and pass the 580 KB libhs_datalog.dll 2/5/2020 2:04 PM Application extens. STWIN F 😅 libhs_datalog.so 2/5/2020 2:04 PM Digital Waveform . 283 KB hins configuration file with -f libstdc++-6.dll 1,507 KB 2/5/2020 2:04 PM Application extens.. oq libwinpthread-1.dll 2/5/2020 2:04 PM Application extens.. 46 KB

filename.json (base) C:\Users\klara pacalova\Downloads\STSW-STWTNKT01_V1_3_1\Utilities

\HS DataLog\cli example\bin>cli example.ex STWIN Command Line Interface example Version: 1.1.0 Based on : ST USB Data Log 1.1.0 Device information: "alias": "STWIN 001", "nSensor": 9, 'serialNumber": "PN3K33 0190001800024" Configuration imported from Json file Press any key to start logging

3. Now you will log data only from desired sensors

Received	, ,,,,,,,,	S221 Only E	nv.	
eceived eceived		S22HH TS751 SENSOI	S	
lapsed time:	ible			
press ESC to ex	<pre>dit!</pre>			
	<pre>cit! SW-STWINKT01_V1.3.1 > Utilities > HS_ Name</pre>	DataLog > cli_example > bin Date modified	> 05032020_13_5 Type	5_35 🗸
	SW-STWINKT01_V1.3.1 > Utilities > HS_			Size
	W-STWINKT01_V1.3.1 > Utilities > HS_	Date modified	Туре	Size
eress ESC to ex	SW-STWINKT01_V1.3.1 > Utilities > HS_ Name	Date modified 3/5/2020 1:55 PM	Type JSON File DAT File	

High-speed datalog Config examples

1. Log the data Run cli_example.exe and pass the logging time with -t [s]

<pre>base) C:\Users\klara pacalova\Downloads\STSW-STWINKT01_V1.3.1\Utilities\ IS_DataLog\cli_example\bin>cli_example.exe -t 10 TWIN Command Line Interface example Persion: 1.1.0 mased on : ST USB Data Log 1.1.0 Pevice information: "alias": "STWIN_001", "nSensor": 9, "</pre>	2. Now HS DataLo N3K33 019 Received Received Received Received
"serialNumber": "PN3K33 0190001800024" sing default configuration ress any key to start logging	Received Received Received Received Elapsed t Remaining press ESC
Usage: cli_example.exe [-COMMAND [ARGS]] -h: Show help -f : Device Configuration file (JSON) -t : Duration of the current acquisition (seconds)	–

2. Now you will log data for the programmed duration

HS DataLog acq N3K33 01900018	uiring from the board named :"STWIN_001", serial number: "P 00024"
Received	684000 total bytes from IIS3DWB
Received	432 total bytes from HTS221
Received	36000 total bytes from IIS2DH
Received 📐	2400 total bytes from IIS2MDC
	413696 total bytes from IMP34DT05
Received	342016 total bytes from ISM330DHCX
Received	4800 total bytes from LPS22HH
Received	1658880 total bytes from MP23ABS1
Received	64 total bytes from STTS751
Elapsed time: Remaining time press ESC to e	
-	HS DataLog acquiring from the board named :"STWIN_001", serial number: "P N3K33 0190001800024"
	Received 1548000 total bytes from IIS3DWB
	Received 992 total bytes from HTS221 Received 81600 total bytes from IIS2DH
	Received 5400 total bytes from IIS2DH
	Received 933888 total bytes from IMP34DT05
	Received 776192 total bytes from ISM330DHCX
	Received 12800 total bytes from LPS22HH
	Received 3739648 total bytes from MP23ABS1
	Received 144 total bytes from STTS751
	Elapsed time: 10.797 seconds Remaining time: 0 seconds Total time press ESC to exit!

MCU & MPU EMBEDDED SOFTWARE					
Picture	Part number 🌲	Manufacturer 💠	Description 💠		
	FP-IND-PREDMNT1	ST	STM32Cube function pack for multi sensors node with signal processing to enable predictive maintenance		

Run the demo (1/3)

Note: Use above binary with Bootloader to copy-paste the image. See <u>Quick Start</u> for details.

Run the demo (2/3)

Data visualization of various sensors 14:43 🖼 ≽ 🗔 Plot Data Sensor selection Accelerometer Start/Stop 1 800 1 600 1 400 1 200 1 0 0 0 800 600 400 Raw data -600 -800 -1 000 -1 200 -1 400 -1 600 -1.800 mp: 476992 Data: (X: 0 Y: -28 Z: 1019 -2 000 🗖 X 📕 Y 📕 Z 111 0

3. Plot data

28,4 [℃] 27,0 [℃] Not available

FFT Amplitude visualization **FFT Settings** 14:41 🖼 ≽ 🗔 FFTAmplit... START LOGGING FFTAmplit... FFT Window type Hanning Y 🖪 Sensor Output Data Rate (Hz) **Z** 6660 0,040 FFT Size 256 Sensor Full Scale (g) 0,032 4 Number of Sub ranges 8 Overlap (%) 0,024 75 Acquisition time (ms) 500 0,016 0,008 all block able based and a second at 0.000 3000 Hz 1 000 2 000 . DETAILS 111 0 < 111 0 <

2. FFTAmplitude

Note: For faster response, recommendation to use 500ms acquisition time

Run the demo (3/3)

4. Cloud logging settings

5. Predictive maintenance

Interactive set of information for predictive maintenance

3 levels of classification – good, warning, alarm (*)

6. RSSI & Battery

Device, signal strength and battery information

(*) 3 levels of classification – thresholds can be changed only by recompiling the project (MotionSP_Threshold.h)

Device name can be changed in

Condition Monitoring using Wi-Fi with FP-IND-PREDMNT1 and DSH-PREDMNT

44

Condition Monitoring summary

- Condition Monitoring applications based on accelerometer vibration analysis with FFT and measuring ultrasound with microphones.
- New IIS3DWB sensor with 6 kHz of bandwidth now available
- New STWIN development kit with latest industrial sensors and SW examples
 available with BLE and Cloud connectivity
- STWIN includes also best components for power, connectivity and protection.

IIS3DWB

Data logging and PREDMNT1 FFT DEMO

Thank you

© STMicroelectronics - All rights reserved. The STMicroelectronics corporate logo is a registered trademark of the STMicroelectronics group of companies. All other names are the property of their respective owners.

Committed to excellence

June 12, 2020 | p. 47

STWIN SensorTile Wireless Industrial Node development kit and reference design for industrial IoT applications

STEVAL-STWINKT1

Get your STEVAL-STWINKT1 board free of charge in three steps and only today (limited to first 10 registrations)

Committed to excellence

STEVAL-STWINKT1

1. visit rutronik24.com

RUTRONIK next generation e-commerce

https://www.rutronik24.com/search-result/qs:STEVAL-STWINKT1/reset:0

STEVAL-STWINKT1

STEVAL-STWINKT1 (ST

2. add to cart

Manuf Part N		Stock Info	Quantity	Price	Total	
ST STEV	/AL-STWINKT1	🕑 In Stock	1	107,16€	107,16€	\otimes
Check / Uncheck	e Save a	as project irticles in your cart as pro use	Update cart C Go to the Request form If you have further questions at prices, lead times or order cond send us a non-binding request, internal sales is going to contac will answer your questions.	out If even itions your Your by ou	107,16 €	is ok, send us

×

0

Search Q

