

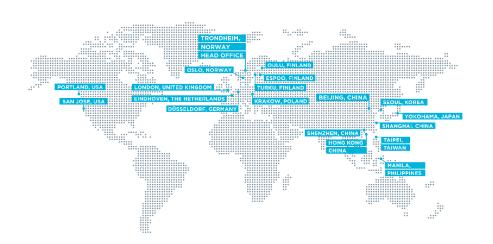
Discover the Improved Revision of NB-IoT and LTE-M Wireless Dual-core MCU and Learn about the Second Generation of Power Profiler Kit

Martin Lesund

Today's host

Martin Lesund

Technical Marketing Manager
Cellular IoT



Agenda

- Introduction Nordic Semiconductor
- Introduction to nRF9160 SiP
- Different modes of the nRF9160 SiP
- How to optimize for low power
- Estimate power consumption using Online Power Profiler (OPP)
- Measure power consumption using Power Profiler Kit II (PPK2)
- Q&A

Nordic Semiconductor at a glance

Fabless

Specialized in low power wireless connectivity and embedded processing

Bluetooth Low Energy market leader

Pioneer in short-range low power IoT technologies Focusing on open standards

Expanded portfolio

Emerging LTE-M and NB-IoT technologies
Expanded offering with 802.15 / Thread and Zigbee

What we do!

Wireless short-range IoT

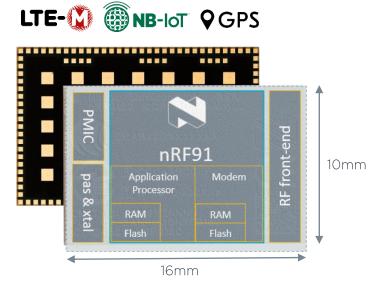
Highly integrated Multiprotocol IC's with on-chip MCU Bluetooth LE, 802.15.4 and 2.4GHz RF SoCs

Solution provider

Flexible protocol stacks, rich toolchain support Apps, SDK's, analysis tools, DK's/Ref.designs

> Cellular IoT Multimode LTE-M1 / NB-IoT + GPS SiP's

ZigBee*



nRF9160 SiP introduction

nRF9160 - Voids Cellular Modules

- Based on Nordic Dual Core SoC:
- Arm® Cortex® M33 MCU for the application
- Multiband LTE-M/NB-IoT modem with GPS
- Small form factor (includes PMIC, RF FEM, passives and crystals)
- Ultra Low Power Avg. 18μA @ 81.92s eDRX
- Multiband support for global coverage
- Pre-certified System-in-Package (SiP)

nRF9160 SiP

Typical Applications for Cellular IoT

Wearables/Medical Retail and POS Home Security Asset Tracking LTE-M Predictive Meintance Smart Metering Smart Agriculture Smart City NB-10

nRF9160 SiP rev 2 - available now

- Significant nRF9160 power improvements introduced in REV2
- Improving an already best in class low power solution
- No changes on pin-out nor form factor
 - Existing REV1 designs only need to change an external cap (DECO) from $47\mu F$ to $4.7\mu F$

Description	nRF9160 REV2	Compared to REV1
CPU running CoreMark @64MHz from flash, HFXO + cache	2.2mA	-24%
PSM floor current	2.7μΑ	-33%
Avg. current eDRX (655s, one PO/PTW, PTW=2,56s)	6μA / 9μA [LTE-M / NB-loT]	-33% / -18% [LTE-M / NB-IoT]

nRF9160 SiP - Ultra Low Power

Enables the lowest power for cellular IoT solutions

	Module A	Module B	Module C	Nordic nRF9160 GEN2	nRF9160 vs. closest module
PSM floor (retained)	~30 uA	~65uA	~55 uA	2,7 μΑ	-91 %
PSM event 'boot'	~1100 mJ	N/A	~700 mJ	105 mJ	-85 %
81.92s eDRX	~50uA	~1200 uA	~6000 uA	18 uA	-64 %
UL 180 kbps 23 dBm power	~210 mA @B13	~175mA @ TBD	~230 mA @B13*	100 mA @ B13	-43 %
Low Power Application MCU	No	No	No	Yes	Only on nRF9160
Embedded SDK	No	No	No	Yes	Only on nRF9160

Different Modes of the Modem

LTE Connection Modes

RRC Connected

Transfer user data

High power consumption

Synchronized with the

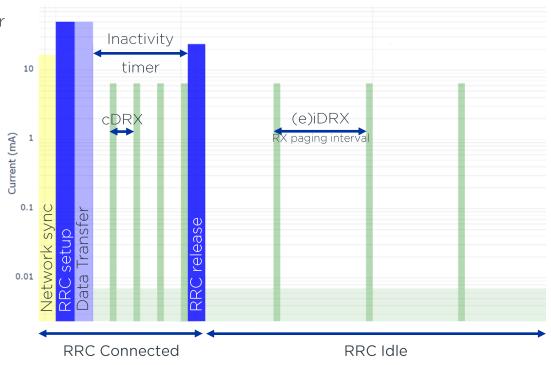
network

RRC Idle

Listening to on the network

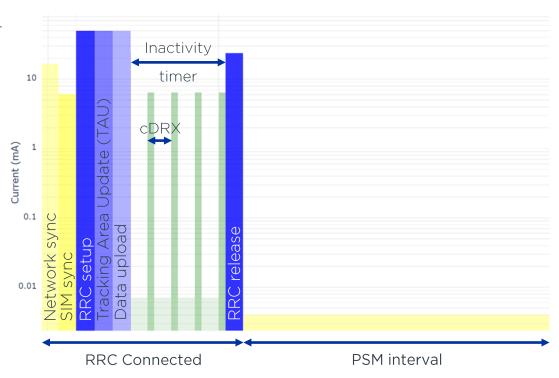
Sleep for shorter intervals to save
power (eDRX)

Shorter DL latency


PSM

Sleep for **longer** intervals to save power

Longer DL latency


RRC Connected and RCC Idle

- Sleep in eDRX intervals to save power
 - cDRX: 0.01s to 10.24s.
 - iDRX: 0.16s to ~44 min
 - We support <u>all</u> timers
- Device can wake up any time to send data
- Network can store data for device
- Device listens for data at the end of each DRX interval
- Longer DRX intervals results in longer download latency, but lower power

PSM

- Sleep in PSM intervals to save power
 - 10 min to 413 days
- Device can wake up at any time to send data
- After the end of each PSM interval, the modem switch back to RRC Connected
- Longer PSM intervals results in longer downlink latency, but lower avg. power consumption
- Lower floor current compared to iDRX intervals RRC Idle

Different Modes of the Application Processor

Application Processor Modes

- MCU will automatically switch to IDLE mode when it has no tasks to perform
- It can operate seperatly from the Modem because of our dual core implementation

Description	Values
MCU on IDLE, Modem in PSM, RTC on	2.7μΑ
MCU on IDLE, Modem OFF, RTC on	2.2μΑ
MCU on IDLE, Modem OFF, RTC off	1.8μΑ
MCU off, Modem off, no RAM retention, wake on GPIO and reset	1.4 µ A

How to optimize for low power

How to Optimize for Low Power

- Get to know your network
 - Estimate power consumption
 - Measure power consumption
- Know that different protocols and cellular technology are more suitable than others based on your application
- Sleep as much as possible and disable peripherals when not needed. Turn OFF logging.
- Edge computing: "Send information not data"
 - Data: Accelerometer data, continuous 3x16-bit values every 100ms
 - Information: The thing fell over sideways hard and is now laying flat

Estimate Power Consumption

Using the Online Power Profiler (OPP)

First Online Power Profiler for cellular IoT

Estimate and optimize your nRF9160 power consumption

- Configure your settings
 - Network setup, Sleep intervals, Data payloads
- Visualized Power Profile
 - Peak current and timing
 - Average
- Extensive User Guide available
- Export nRF Connect SDK project settings to be used with UDP sample
 - Unified solution with the PPK2 to evaluate the estimations vs. real current measurements

Measure Power Consumption

Using the Power Profiler Kit II (PPK2)

Power Profiler Kit II (PPK2)

- Nordic Dev Tool for current measurement and analysis
 - 200nA to 1A current range with resolution varying between 100nA and 1mA
 - 10x faster sampling than first generation PPK
- Measure and analyze any embedded HW, including all Nordic DKs
- Supported by the new Power Profiler app in nRF Connect for Desktop
- Standalone product

Why do developers need this?

- Useful tool to track power consumption
- Ampere meter mode and Source mode
- Detailed data to estimate power consumption and battery life
- Spot and debug unwanted current drain during entire engineering cycle
- Simple and cost-efficient (\$89 retail price)

Demonstration:

Estimating and measuring power consumption